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7.1 INTRODUCTION

Although optical characterization of tissues is increasingly being studied and used
for biomedical diagnostics, in the vast majority of cases this characterization is based
on intensity measurements. However, the interaction with the sample of interest
also induces significant changes in light polarization, which also conveys useful
information about the morphology and functional state of the investigated tissue
[1-4]. Polarimetry typically provides contrasts quite different from those observed
in ordinary intensity imaging. Taken alone or in conjunction with other techniques
these contrasts may prove very useful for biomedical diagnostics.

In spite of its great potential, polarimetry is far from having reached the same
degree of maturity in the biomedical field as intensity-based techniques. One possi-
ble reason for this “lag” is the strongly depolarizing nature of almost all biological
tissues, which require sophisticated experimental setups and data treatment proce-
dures to be properly characterized. In fact, in complex random media like tissues,
numerous complexities due to multiple scattering and spatially inhomogeneous bire-
fringence, as well as simultaneous occurrences of several polarization events, present
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formidable challenges for biomedical tissue polarimetry [3]. However, polarimetric
instrumentation as well as theoretical understanding and numerical simulation of
the interaction of polarized light and biological tissues are progressing impressively,
paving the way for attractive applications. Polarization can be used to discriminate
singly versus multiply scattered light. Tissue optical anisotropy and depolarization
power may be characterized quantitatively, even when these effects occur simultane-
ously. Via proper analysis and modeling, these data may ultimately provide reliable
techniques for “optical biopsy” which, in turn, may dramatically improve the man-
agement of various diseases.

In this chapter, we review polarized light fundamentals and mathematical formu-
lations of polarized light and its propagation in biological tissues, discuss advances in
various emerging polarimetric measurement systems, describe forward and inverse
problems in polarimetry of turbid media (both theoretical modeling and experimental
validation), and focus on applications related to tissue diagnosis and assessment.

7.2 POLARIZED LIGHT FUNDAMENTALS

7.2.1 Polarization States

7.2.1.1 Totally Polarized States For a purely monochromatic optical wave of
frequency w, propagating along the z axis, its electric field E vibrates in the xy plane
according to

Eg, cos(wt — fz+ ) | o
E(z,1) = lEOy cos(@r — f= + ¢y)] = Re[exp(iw — if2)J], (7.1)
with
ﬁ=|ﬁ|=(n—ik)§ (12)

being the modulus of the propagation vector (3, ¢ is the speed of light in vacuum,
and n and k are the real and imaginary parts of the refractive index, which determine,
respectively, the speed of light and the absorption in the medium. The amplitudes E;
and phases ¢; are constants and define the Jones vector J as [5-7]

_ lEOx eXp(i([)x) ] (7 3)

| Eoyexpligy)

The polarization of the wave—the shape of the trajectory described by E in the
xy plane—depends only on the ratio of the amplitudes tan a and the phase difference
@ defined, respectively, as

Ey,
tanvo = ——and ¢ = ¢, — @,. (7.4)
EOx
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FIGURE 7.1 The polarization ellipse of a wave propagating in the z direction (toward the
observer). E;, and E, are the amplitudes of the field oscillations along the x and y directions;
their ratio is equal to tan v. @ is the azimuth of the major axis of the ellipse and ¢ is its ellipticity.
Ellipticity is positive or negative for left- or right-handed states, respectively.

This trajectory is in general elliptical and is represented in Figure 7.1. Besides the
parameters defined in Eq. (7.4), the ellipse can also be described by the orientation
(azimuth) a of its major axis and its ellipticity €, which is positive for left handedness
and negative for right handedness. The ellipticity e varies between the two limits
of zero (linearly polarized light) and +45° (circularly polarized light), which thus
represent the two limits of generally elliptical polarization. Table 7.1 lists the Jones
vectors of usual polarization states (with H, V, P, and M for linear polarizations along
the horizontal, vertical, +45°, and —45° directions, and L and R for left and right
circular polarizations, respectively).

The intensity of a fully polarized wave characterized by the Jones vector J is given
by

oxX

I=I,+1I,= %(E2 + Eﬁy) = %(J ®J). (7.5)

TABLE 7.1 Usual polarization states: Jones vectors, azimuths, ellipticities, and shapes
of the ellipses

State H V P M L R Elliptical

7 1 0 L 1 L 1 L 1 L 1 COS @ COS € — [ Sin a sin &
0 1 \/5 1 \/5 -1 \/5 —i \/5 i sina cos € + icos a sin €

a 0 90° 45° —45°  Undefined Undefined a

I3 45° —45° I3

w1 N OO0 O

ellipse
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FIGURE 7.2 TIllustration of the extinction method of analysis of arbitrary elliptical polar-
izations. The initial elliptical polarization is transformed into a linear one (L) by inserting a
quarter-wave plate with its slow axis S at azimuth a. Extinction is then obtained by setting a
linear analyzer A perpendicular to L. The ellipticity € is thus measured as the angle between
the analyzer set for extinction and the fast axis F of the quarter-wave plate.

Experimentally, the usual “recipe” to determine that a light beam propagating
along z is linearly polarized along an azimuth « is to observe its extinction through
a linear analyzer set perpendicular to a. This characterization may be extended to
elliptically polarized beams as illustrated in Figure 7.2.

To determine the ellipticity € (as the beam may not be fully linearly polarized),
a quarter-wave plate (QWP) is inserted in the beam path with its slow axis at the
azimuth a. Due to the 90° induced phase shift thus introduced, the initial incident
elliptical polarization is transformed into a linear one, oriented at @ + ¢ from the x
reference axis. Then, a linear analyzer with its passing axis set at £ from the fast axis
of the QWP will totally extinguish the beam. In practice, the extinction is achieved
by trial-and-error procedure, and the azimuth a and the ellipticity € are eventually
determined from the angular settings of the QWP and the analyzer when maximum
extinction is obtained.

7.2.1.2 Partially Polarized States  1f one tries the extinction method to characterize
“natural” light directly coming from a source such as the sun or a light bulb, the
detected intensity is seen to be independent of the settings of the QWP and the
analyzer. One can thus conclude that the light coming from the sun or the light bulb
is totally depolarized.

In other cases—for example the light coming from a bulb but reflected on a plastic
floor en route to observer—the intensity detected through the QWP and the analyzer
varies between [;, and I,,,. This provides an experimental definition of the degree

max-*

of polarization (DOP) of the light beam

I —1.
DOP = max _min (7.6)
1 +1

max min
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For totally polarized states, I,;, vanishes and DOP = 1. At the other extreme, for
totally unpolarized light I,,;, = I.,,,, and DOP = 0. For partially polarized states, the
DOP may take any intermediate values between zero and one.

For partially polarized states, the motion of the electric field in the xy plane is no
longer a perfect ellipse, but rather a somewhat disordered one. In case of a totally
random motion of the electric vector E, one would surmise that in the extinction
procedure the analyzer would detect the same constant intensity. What is implicitly
assumed in this description is that the light polarization may be defined at any instant,
but may vary significantly over time scales much shorter than the integration time of
the detector. As a result, this detector takes the temporal averages of the intensities,
sequentially generated by different totally polarized states. While this idea is basically
correct, it is important to emphasize that this averaging of intensities (i.e., incoherent
sum) of polarized contributions is not necessarily temporal.

To this end, consider the scattering experiments schematized in Figure 7.3. In one
case (top panel), the object is optically thin and the laser undergoes single scattering
by the rough surface. Conversely, in the other case the object is optically thick and
multiple scattering is dominant. In both cases, the incident laser beam is spatially
coherent, and the scattering objects are static (we ignore for the moment any possible
thermal/Brownian motions). It is well known that in these conditions what is observed
on the screen is a speckle pattern due to the interferences, at each point of the screen,
of many scattered waves which reach this point with random (but static) amplitudes
and relative phases [8].

I

[VA

FIGURE 7.3 Scattering experiment of a linearly polarized coherent beam by static samples.
Top: single scattering by a thin sample. The polarization state of the speckle spots is the same
as that of the incident beam throughout the speckle pattern. Bottom: multiple scattering by
an optically thick sample. The polarization state varies from speckle to speckle. (For a color
version of this figure, see the color plate section.)
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The major difference between single and multiple scattering regimes is that for the
former, the polarization of all scattered waves is the same as that of the incident laser,
while in case of multiple scattering these polarizations are random. Consequently,
as outlined in Figure 7.3, for single scattering all the speckles feature the same
polarization as the incident laser, while in the other case, each speckle is still fully
polarized, but this polarization varies randomly from one speckle to the next.

Can one thus conclude that multiple scattering always depolarizes an incident
polarized beam? The correct answer depends on how the sample is illuminated and
how the emerging light is detected.

o Ifthe beamis coherent, the sample is static and the detection zone is smaller than
the size of the speckles, then there is no depolarization. The initial polarization
state is converted into another fully polarized one at each point of the speckle
pattern.

o If the detector is much larger than the speckle size, then if one applies the
extinction method to analyze the polarization, some speckles will exhibit varying
intensity, but randomly so (different speckles displaying different polarization
states). Thus, the overall detected signal will be constant, and according to the
criterion defined in Eq. (7.6), the detected light is totally depolarized. This is
because the large detector performs a sum of intensities of the contributions of
different polarized states (the speckles), this sum being performed spatially in
this case. On the other hand, for single scattering the same large detector would
see an extinction for suitably aligned QWP and analyzer, and the emerging light
would be considered fully polarized.

e If the illumination beam is not spatially coherent (which is generally the case
for a beam from a classical source), then the relative phases at different points
of this beam change very rapidly, and so does the resultant speckle pattern. As
a result, even if the detector is small, the polarization will vary rapidly in time,
and the measured DOP would be small.

® The same conclusion may be reached (strong depolarization at each point of
the screen) if the beam is coherent but the sample is not static, as for example a
liquid suspension of small scatterers which undergo Brownian motion. However,
the typical time constants for Brownian-motion-induced speckle variations are
much longer (ms to seconds) than those due to the lack of spatial coherence for
a light beam coming from a classical source (~fs), and they may be temporally
resolved by many detectors.

¢ Finally, if the incident light is polychromatic, then each wavelength creates its
own speckle pattern, with basically no correlation between the patterns created
at different wavelengths. As no interferences are possible between waves with
different wavelengths, the incoherent intensity summation takes places naturally,
leading to depolarization in each point of the observation screen.

To summarize, “true” depolarization requires that the detected signal is the sum of
intensities due to various polarized contributions with different polarizations. This
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summation may be performed temporally, spatially, or spectrally, and it depends not
only on the sample itself but also on the characteristics of the illumination beam and
of the detection system.

7.2.1.3 Stokes Vectors Following the above presentation, polarized states are not
characterized in terms of well-determined field amplitudes, but rather from intensities
measured through various analyzers, which are in turn averages of quadratic functions
of the field amplitudes. These quantities may be arranged in various ways. The most
commonly used is the Stokes vector, which is a real four-row single-column array
defined as

1 Ix+1Iy (E.E* + EyE;f>
-1 E.E* —E,E"
s |92 Yl <X1 y{k> , (7.72)
Ul (p-1mm (E.E; +E\E})
|4 I —Ig (i(E(E; — E\EY))

where [, Iy, Ip, and ), are the intensities measured through ideal linear polarizers
oriented along x or y axes, or at +45° or —45° azimuths. /; and Iy are measured
through left and right circular polarizers, respectively. It can be shown [9-12] that
Stokes vectors can define any polarization state and any DOP. The first element 7 is
the polarization-independent light intensity, and as such is equal to any other sum
of orthogonal intensities (e.g., Ip + I, or I} + Ig). Also note that S is not a vector
in the geometric space, rather this array of intensity values represent a directional
vector in the polarization state space (Poincaré sphere, described subsequently). For
totally polarized states defined by Jones vectors of the form given by Eq. (7.3), the
corresponding Stokes vectors are

1
5 (Bo, + Egy)
1

s=| 5B~ E) |. (7.7b)

(EOxEOy cos (P)
(EOxEOy sin (0)

Note that the Stokes vector by its definition (Eq. 7.7a) incorporates both the pure
(totally polarized) and mixed (partially polarized) states and this definition evolves
from the so-called 2 X 2 coherency matrix N [12]. The coherency matrix is defined
through the ensemble averaged Jones vector as N = (J ® J*) and accordingly its
four elements are (E,E}), (E Ey*), (E,EY), and (EVE;‘> [12]. Conversely, it follows
that the Stokes vector elements (I, Q, U, and V) are the expansion coefficients of the
coherency matrix in terms of the identity matrix and the three Pauli spin matrices
[12].
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TABLE 7.2 Normalized Stokes vectors for usual totally polarized states (cf Table 7.1)

State H \% P M L R Elliptical
1 1 1 1 1 1 1

S 1 -1 0 0 0 0 cos2a cos2e
0 0 1 -1 0 0 sin2a cos2e
0 0 0 0 1 -1 sin 2e

Stokes vectors can be written in normalized form as

sT=1<1,%%,¥> = I(1,qu,v) = I(1,s"), (7.7¢)

where the superscript T means the transpose. The three intensity-normalized coor-
dinates ¢, u, and v are the quantities which actually define the polarization state
independently of the total intensity /. The normalized Stokes vectors for usual fully
polarized states are listed in Table 7.2.

At the other extreme, for totally unpolarized states, Q = U = V = 0, which
corresponds to the fact that no matter how the analyzer is oriented, for such states the
transmitted intensity is always the same, equal to one half of the total intensity.

The DOP defined experimentally in Eq. (7.6) can be expressed in terms of the
normalized Stokes vector components as

DOP = /2 + u2 + 2. (7.8a)

It is straightforward to check that for Stokes vectors of the form (7.7b) we get
DOP = 1. In addition to the overall DOP, we can define the linear and circular DOPs,

respectively, as
DOP; =4/¢*+u? and DOP: =v. (7.8b)

Experimentally, the DOP; can be measured by the extinction method using only
a rotatable linear polarizer, without the QWP. Equation (7.6) then applies with I,
and [I;,, representing the maximum and minimum intensities measured when the
polarizer is rotated. On the other hand, DOP. can be measured by using left and
right circular polarizers. Calling again /;, and I the intensities measured through
these circular polarizers, DOP( is given by the same formula (7.6) but with /; and Iy
replacing I, and I,

Physical realizability. In contrast with Jones vectors, which could be any 2D com-
plex vectors, any four-dimensional element real array is not necessarily an acceptable

Stokes vector, due to the condition

DOP < 1. (7.9)
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FIGURE 7.4 Geometrical representation of Stokes vectors within the Poincaré sphere. Any
given polarization state is represented by a point whose Cartesian coordinates are the intensity-
normalized coordinates (g, u, v). The radial coordinate is the DOP and the “longitude” and
“latitude” are, respectively, 2a and 2¢. Totally polarized states are found at the surface of the
unit radius sphere, while partially polarized states are inside (e.g., points A and B, respectively).
Linearly polarized states, among which H, V, P, and M states, are on the “equator” while the
L and R circular states are found at the “poles.”

The Poincaré sphere. A very convenient geometrical representation of all possible
polarization states involves the intensity-normalized coordinates ¢, u, and v defined
above, as illustrated in Figure 7.4 [12]. In this space, the DOP is nothing else but
the distance of the representative point from origin. Thus, the physical realizability
condition given by Eq. (7.9) implies that all acceptable Stokes vectors are represented
by points located within the unit radius sphere, also called the Poincaré sphere.
Totally polarized states are found at the surface of the sphere (point A) while partially
polarized states are inside (point B). The other spherical coordinates, the points
“latitude” and “longitude” are nothing else but twice the azimuth « and ellipticity
€, as shown by the last column of Table 7.2 for totally polarized states. As shown
throughout this chapter, this geometrical representation provides simple and intuitive
descriptions of many aspects of the interaction between polarized light and samples
and/or instruments.

Before we move on to define sample polarization interactions through this “con-
ventional” Stokes—Mueller algebra, it may be worthwhile to briefly mention the
validity regime of such algebra. Note that both the Jones vector (in the field repre-
sentation, Eq. 7.3) and the Stokes vector (intensity-based representation, Eq. 7.7a)
deal with two-dimensional electromagnetic field and are applicable when the light
wave is completely transverse (plane electromagnetic waves or more generally to
uniformly polarized elementary beams). However, it has been shown that even for
paraxial beam-like fields, the spatial mode (field distribution) and polarization are
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not always separable (unlike plane waves or elementary beams), and accordingly
one needs different algebra to describe such inhomogeneous polarization [13]. This
so-called classical entanglement between polarization and spatial mode is handled
by defining beam coherency polarization matrix (a variant of the 2 X 2 coherency
matrix incorporating simultaneously both the field polarization and its spatial distri-
bution) [13]. In other general cases involving three-dimensional field (as encountered
in tight focusing scenarios and in the near field), the two-dimensional polarimetry
formalisms have been extended via the definition of 3 X 3 coherency matrix and
generalized nine-element Stokes vector [14]. Moreover, there are other emerging
“unconventional” polarization algebra formulations involving vector beams, geo-
metric phases (Pancharatnam—Berry phase) arising from spin orbit interactions of
light, radial, and azimuthal polarization of light beams, and so forth [15-17]. Even
though such generalized polarization algebra may find useful biomedical applica-
tions; these have yet not been explored in tissue polarimetry research (possibly due to
the unknown magnitude/relative importance of these effects in tissues, and possibly
due to the numerous complexities in tissue signal detection and analysis). We thus
restrict our discussion to the “conventional” polarization algebra and its applications
in tissue polarimetry.

7.2.2 Interaction with a Sample

7.2.2.1 Mueller Matrices For any optical system operating in the linear regime
(which is always the case except when the light source is a high power pulsed laser),
the output intensities are linear functions of the inputs. As a result, the transformation
of the Stokes vectors must also be linear, thus described by a 4 X 4 real matrix M
called Mueller matrix [18]:

Sou =MeS,,. (7.10)

In analogy with S, which represents the polarization state of the beam, M thus
represents the corresponding polarization properties of the sample; the link between
the two is accomplished via the Mueller—Stokes calculus as described by Eq. (7.10).

Physical realizability. Analogous to Stokes vectors, any 4 X 4 real matrix is
not necessarily a physically acceptable Mueller matrix. An obviously necessary
condition is that in never transforms a physically acceptable Stokes vector S;, into
an “overpolarized” one S, with DOP > 1. However, this condition is necessary but
not sufficient. A general procedure for determining the acceptability of M, based on
the calculation of the so-called coherency matrix N [12, 19], is given in Reference
20 and is outside the scope of this review. This procedure may also be used to
“correct” a slightly unphysical matrix (possibly due to measurement errors) to make
it acceptable.

Depolarizing or nondepolarizing character. A physically acceptable Mueller
matrix is said to be nondepolarizing if any input totally polarized Stokes vector
S;n 1s transformed into a totally polarized S,,. (in other words, the DOP does not
decrease). Necessary and sufficient conditions for a matrix to be nondepolarizing
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have been examined [20,21]. Conversely, for depolarizing Mueller matrices the DOP
of S, is smaller than that of S;,. It is important to note that, for any resulting Mueller
matrix, the reduction of the DOP depends on the input state S;,; for example, a given
tissue sample in a particular examination geometry can be more depolarizing for
input circular states than for input linear ones, or vice versa. It is therefore impossible
to uniquely define the depolarization power of a generic Mueller matrix M.

Among the various definitions of this depolarization power of a sample described
by M, one very widely used is the “depolarization index” Py [22]:

2 _ aAg2
%;Mt}i My TrMTM) — M2
— |t (7.11)
M3,

2
M7
which varies from O for a total depolarizer to 1 for nondepolarizing matrices.

7.2.2.2 Diattenuation and Polarizance These two properties can be determined
unambiguously for any Mueller matrix M from its very definition in terms of inten-
sities. Quite generally, M can be rewritten as

1 DT

where D (first row) and P (first column) are the diattenuation and polarizance vectors,
respectively, while m is a 3 X 3 real matrix. These formulations are easily justified
as follows.

Diattenuation. For a diattenuating system, the output intensity depends on the
polarization of the incident wave. If we consider an intensity-normalized input Stokes
vector S

S =(1,s") with ||s||=DOP <1 (7.13)

corresponding to arbitrary polarizations at constant intensity (normalized to 1), then
the output intensity (i.e., the first component of S ;) is simply given by
Iout = mll(l +D- S)- (714)

This output intensity reaches its maximum (resp. minimum) value 7., (resp. /i)
when the scalar product D - s is maximum (resp. minimum) under the constraint

|s|| = DOP < 1, that is, when s = i”—g”. We thus obtain

DT
S;““=<1’||D||) and - Igy = myy (1 + DI (7.152)

DT
T _ —
ST = (1,— DT ”>, and I, =m;(1—[D]) (7.15b)
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from which we immediately get for the scalar diattenuation D

I...—1.
p =D& min_p. (7.16)
Imax +Imin

In summary, the diattenuator vector D defines both the scalar diattenuation D
and the polarization states transmitted with the largest (or the lowest) intensity. Note
that the two polarization states providing these extreme intensity transmission values
are totally polarized, and located at diametrally opposite positions on the Poincaré
sphere.

Polarizance. We now consider this property which corresponds to the capacity
of the sample to polarize incoming beams, specifically fo impart a finite DOP to an
unpolarized input beam. In this case the Stokes vector of the output beam is simply

I

1 D™\ |o 1
Sout =my P m 0 = mlll P/ (717)
0

In a way analogous to diattenuation, from the polarizance vector P we can define
a scalar polarizance P = ||P||,

Independence of polarizance and diattenuation. In practice, diattenuation
and/or polarizance may occur

® at interfaces, where the transmission and/or reflections coefficients may be dif-
ferent for the polarization in the plane of incidence (p polarization) or orthogonal
to this plane (s polarization), due to the well-known Fresnel laws [23]: trans-
mission is larger (and reflection is smaller) for p than for s polarization; and

o during the propagation in bulk anisotropic materials. In this case, diattenuation
and/or polarizance is due to the dependence of the imaginary part of the optical
refractive index on the light polarization.

For the simple cases cited above, the polarizance is directly related to the diatten-
uation: P = D. For more complex systems, and in particular depolarizing ones, P and
D become totally independent parameters, as shown by the following examples:

1. Consider a polarizer followed by a perfect depolarizer. Such a system clearly
exhibits diattenuation, as the intensity transmitted by the polarizer depends
on the orientation of the incoming linear polarization. However, the beam
emerging from the depolarizer is, by definition, totally depolarized, implying
that an initially depolarized beam would remain totally depolarized. As a result,
such a system exhibits a strong diattenuation but no polarizance.

2. Let us now consider the same elementary components, but in reverse order
(depolarizer first, polarizer afterwards). In this case, any incoming polarized
beam is transformed by the depolarizer into a totally depolarized beam whose
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FIGURE 7.5 Normalized Mueller matrix image of a resected human cervix in backscattering
geometry. The field of view is 3 X 3 cm?. The sample is about 5 mm thick and has conical
shape. All elements are normalized by m,; and these normalized values are given in the color
scale shown at top right, ranging from —0.2 to 0.4. This sample features no diattenuation, as
shown by the vanishing elements in the first row, and significant linear polarizance (elements
m,, and m5,) at some points where the light emerges at grazing angles from the sample surface,
and is polarized by a local “Brewster angle” effect (A. de Martino, unpublished results). (For
a color version of this figure, see the color plate section.)

intensity does not depend on the incoming polarization. Then, the polarizer
transforms this beam into a polarized one, with always the same polarization.
In contrast with the previous case, now the system exhibits zero diattenuation
but a strong polarizance (P = 1 for a perfect output polarizer).

While such effects may seem purely “academic,” they can actually occur in real
systems, and more particularly in biological samples. Figure 7.5 shows a Mueller
image of an ex vivo surgical sample of uterine cervix, normalized by m;. On this
image, some narrow regions, close to the edge of the sample, clearly exhibit nonzero
linear polarizance (elements m,; and m5;), without any detectable counterpart in the
diattenuation (elements m;, and m3). As indicated in the figure, these regions are
seen under grazing angles. Then, as outlined above, the light component polarized
parallel to the local surface normal (the local p polarized component) is much better
transmitted at the air-tissue interface than the component polarized parallel to the
surface itself (the local s polarized component). As a result, the light emerging from
these regions is strongly polarized even if the sample is illuminated with unpolarized
light. On the other hand, the main contribution to this emerging light is due to rays
impinging on the samples in other places, at incidences closer to normal and then
multiply scattered. As a result, there is little or no diattenuation effect for these
impinging rays and the situation is quite similar to the case 2 outlined above.
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7.2.2.3 Homogeneous Diattenuators and Retarders Polarimetric elements are
called homogeneous if they exhibit two fully polarized orthogonal eigenstates, that
is, two polarization states which are transmitted without alteration and which do not
interfere with each other. In practice, such light states are linearly polarized along
two perpendicular directions, or circularly polarized and rotating in opposite senses.
The normalized Stokes vectors S; and S, of such orthogonal states are of the form

ST = (1,s"), ST = (1, -s") (7.18)

with ||s|| = 1, as these states are fully polarized. Orthogonal states are thus found
on the surface of the Poincaré sphere at diametrally opposed positions. For any
homogeneous polarimetric element, there are thus two (and only two) such states
which are left invariant on the Poincaré sphere.

Homogeneous diattenuators: These elements are uniquely determined by their
diattenuation vector D. Their (totally polarized) eigenpolarization states correspond-
ing, respectively, to maximum and minimum transmissions are given by Egs. (7.15)
with

D D

Smax = l_)’ Smin = _B~ (719)

The corresponding Mueller matrix is then given in synthetic form by [24]

1 DT
Mp =7 < > where mp = V1 -D2I; + (1 - V1-D%)D DT, (7.20)

D my

where 7 is the intensity transmission for incident unpolarized light. As already men-
tioned, diattenuation may occur due to reflection and/or refraction at an interface, or
to propagation in anisotropic or chiral materials. Anisotropy may introduce linear
dichroism. If so, for any propagation direction (except very particular ones deter-
mined by the symmetry of the material) the imaginary part of the refractive index
k may take two different values, k; and ky; The former, corresponding the lowest
absorption, is valid for a wave linearly polarized at azimuth 6 and the latter for the
orthogonal polarization, at 8 + 90°. The linear (scalar) dichroism is then defined as

Ak = ky — kg > 0. (7.21)

For a parallel slab of thickness L, the intensity transmissions for the two eigenpo-
larizations are respectively

T,

max

= exp(—2k; L), Tin = exp(—2kyL) (7.22)

resulting in a scalar diattenuation

T ..—T..
D= -0 __min _ ginh(d) (7.23)
Tmax + Tmin

where d = AkL is the dichroism integrated over the slab thickness L.
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Chiral media (e.g., a biological fluid with glucose) can also feature dichroism, but
then it is circular dichroism. The above formulas are still valid, but in this case the
eigenpolarizations for which the absorption coefficients are well defined are left and
right circular ones.

The matrix of a homogeneous diattenuator is symmetric, explicitly written for a
linear diattenuator as [12]:
MLD(T, D, 0)
1 Dcos26 Dsin 26 0
7 | Dcos28 cos220 + V1 —D?sin*20 (1 — V1= D?)cos20sin20 0
2| Dsin26 (1=1/1-D?)cos20sin20 sin’(20) + V1 — D? cos? 26 0
0 0 0 V1 - D2
(7.24)
implying that the maximum and minimum intensity transmittances are obtained for

linearly polarized states with azimuths 6 and 6 + 90°. A straightforward calculation
indeed shows that

1 1
Mun(e0.0)| S0 | =50+ p G| ana
0 0
, (7.25)
1 1
Mo 20| 500 =5 a-0| T,
0 0

which is a direct check that these states are unchanged by M, ,(z,D,0), but are trans-
mitted with intensity factors % (1 £ D). Similarly, for circular diattenuators the corre-
sponding matrix is

1 0 0 D
0 Vi-p? 0 0
0 0 Vi—p2 0
D 1

0 0

Mcp(z.D) = £ (7.26)

and of course in this case there is no need to define any particular azimuth 6.
Homogeneous retarders: For these elements too there are two orthogonal eigen-
polarization states, each of which is transmitted without modification of its shape. In
contrast with diattenuators, retarders transmit both eigenstates with the same intensity
coefficients, but different phases. This phase difference is the scalar retardation 6.
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In practice, like diattenuation, retardation may be caused by reflection and/or
refraction at an interface, or by propagation in anisotropic materials. This latter
case is particularly relevant for tissue polarimetry. Anisotropic tissues are typically
connective tissues, with fibrillar proteins (collagen is the prime example) which may
be spatially organized with a preferential orientation. Then if we consider a light
wave propagating along z, and call @ the azimuth of the fiber orientation direction in
the xy plane, the refractive index is larger for light linearly polarized at azimuth 6
than at @ + 90°. These azimuths then define the slow (6) and fast (6 = 90°) axes in the
xy plane, with refractive indices ng and ng. The linear birefringence of the material
is then defined as

An = ng — ng. (7.27)

Propagation over a distance L in such a material introduces a scalar retardation 6
(in radians)

§5=2720L

(7.28)

For homogeneous retarders, the orthogonal Stokes eigenvectors are again of the
form given by Eq. (7.18). A pure retarder can be described geometrically as rotation
in the space of Stokes vectors. Mathematically the Mueller matrix My of the retarder
can be written in compact notation as [24]

T
MR=<1 0 > (7.29)

0 mg

where 0 represents the null vector and the 3 X 3 submatrix, mg, is a rotation matrix
in the (g, u, v) space. As a result, the action of a homogeneous diattenuator on an
arbitrary incident Stokes vector S is a mere rotation of its representative point on the
Poincaré sphere, described by mg. Moreover, the axis of this rotation is defined by
the two diametrally opposed points representing the two eigenpolarizations, and the
rotation angle is nothing else but the retardation 6 [12].

For linear retarders with eigenstates linearly polarized along € and 6 +90°
azimuths, the Mueller matrices are [12]

M; r(7,6,0)

1 0 0 0

0 cos220 +sin>20coss  cos 26 sin 20 (I —cosd) —sin26sinéd
0 cos260sin26 (1 —cosd) sin? 20 + cos?20cos s cos20sinés

0 sin 26 sin 6 —co0s20siné cos é

=T

(7.30)

And Eq. (7.25) is still valid, provided both intensity transmittance factors %(1 + D)
are replaced by 7.
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We now consider circular retarders, that is, elements for which the eigenpolariza-
tions are counter-rotating circular ones. The Mueller matrices of such elements are
of the form:

1 0 0 0
0 cos2y —sin2y O
Mcr(y) =7 . (7.31)
0 sin2y cos2y O
0 0 0 1

When a linearly polarized wave interacts with a circular retarder, its polarization
remains linear, but it is rotated by an angle y which is nothing else but the circular
retardance, as it can be checked by a straightforward calculation analogous to that
shown in Eq. (7.25). Circular birefringence is observed in media lacking any mirror
symmetry, like solutions of chiral molecules where only one enantiomer is present.
An example of major practical clinical importance is that of glucose, as discussed in
greater detail later. Chiral media are usually characterized by their optical activity y
rather than their circular birefringence An,:

7= 277[An (7.32a)

so that the optical rotation y due to propagation over a distance L is simply
v = yL. (7.32b)

We point out, however, that in tissues (like in essentially any usual materials,
except for example some particular liquid crystals) optical activity is an extremely
weak effect, much weaker than linear birefringence whenever this latter effect is
present.

Finally, we point out that the scalar retardation of any homogeneous retarder
(linear or circular) is easily determined from its Mueller matrix My as

S,y =cos! <w - 1) . (7.33)

7.2.2.4 Depolarizers By definition, a depolarizer is an object that reduces the
DOP of the incoming light. The conceptually simplest (and most relevant in practice)
depolarizers are those for which the Mueller matrix M, is diagonal

(7.34)

S O O =
S O 2 O
[=EES e =]
o o o O
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with absolute values of a, b, and ¢ smaller than 1. If so, any incident Stokes vector S;
of the form

T
S/ =1(1,q,u,v) (7.35a)
is transformed into
T
Sou = 7l(1,aq, bu, cv) (7.35b)

which implies that

DOP,,, = \/ a?q> + bu? + 12 < \/ @ +u?+v2=DOP,.  (7.35)

In the geometrical representation, the action of a depolarizer defined in (7.34) is
to “pull” the representative point of the incoming Stokes vector toward the origin. As
a result, the Poincaré sphere is transformed into an ellipsoid limited by the segments
[—a,al, [-b,b], and [—c,c] along the g, u, and v axes.

As discussed in Section 7.2.1.2, depolarization occurs due to incoherent addition
of intensities of polarized states with different polarizations. In tissues, depolariza-
tion is due to multiple scattering in the first place, together with spatially varying
linear birefringence in connective tissues [4]. However, these effects alone are not
sufficient to cause “real” depolarization, but would give rise to a speckle pattern with
DOP = 1 everywhere but with different polarizations from one point to another.
“True” depolarization occurs if this speckle pattern is “blurred” by motion of the
scattering sample, lack of spatial coherence of the illumination beam, sample motion
(e.g., blood flow during in vivo measurements), and the like.

Depolarization is a major polarimetric effect in virtually all tissues (with the
noticeable exceptions of eye cornea and aqueous and vitreous humors). In the absence
of strong optical anisotropy, the tissue can be viewed as a suspension of isotropic
scatterers. Then

o If the incident light is linearly polarized along the azimuth «a, the reduction of
DOP (also called the depolarization power) is independent of a. A necessary
and sufficient condition for this is @ = b in Eq. (7.34). Moreover, as there is no
reason why the azimuth of the “blurred” ellipse should change, a and b must be
positive, and thus finally comprised between 0 and 1.

o If the incident light is circularly polarized, then the depolarization effect is
described by the ¢ diagonal term. This term is always positive in forward
scattering, and also in the vast majority of cases of backward scattering, where
the handedness is reversed with respect to the incident one, as it occurs for a
reflection on a mirror [25]. However, ¢ may sometimes take on negative values
in other geometries, and more particularly in backward scattering [26].This
unusual behavior may be observed when each individual scattering process takes
place at small angles from the forward direction, and the overall backscattering
process is dominated by “U turns” with large radii of curvature and circular
polarizations which follow these turns “adiabatically” [27].



POLARIZED LIGHT FUNDAMENTALS 257

® There is no general relationship between a = b and c¢. As discussed in more
detail in Section 7.4.1.2 when the size of the scatterers is much smaller than
the optical wavelength (Rayleigh scattering regime) then a = b > |c|, resulting
in stronger depolarization for circularly than linearly polarized incident light.
Conversely, when the scatterers are larger than the wavelength, the opposite
holds (a = b < ¢). As a result, comparison of linear and circular depolarizing
powers provides useful information about the average size of the scatterers.
In practice, the vast majority of tissues behave as Rayleigh or Rayleigh-Gans
scatterers [28—31], at least with respect to their polarization response.

In the most general case, the Mueller matrix of a depolarizer, M,, is given in

compact notation as [24]
1 oF
M, = , (7.36)

0 m,

where m, is a 3 X 3 real symmetric matrix. This matrix can be diagonalized to recover
the form given by Eq. (7.34) where the eigenvalues a, b, and c are real numbers varying
between —1 and 1. Thus, the Mueller matrix of the most general depolarizer depends
on six parameters (as it can be seen from the very definition of the m, matrix as
a 3 X 3 symmetric matrix, or by the fact that the diagonalization process involves
not only the three eigenvalues, but also the basis formed by the eigenvectors of m,.
General depolarizers are thus rather complex mathematical objects, this complexity
being related to situations like multiple scattering in anisotropic media. Here we will
not discuss the properties of general depolarizers any further, and in the following
we will only consider depolarizers of the form given by Eq. (7.34). We thus define
the depolarizing power of such samples as

A=1- %(lal + 15+ e (7.37a)

which can be further specialized in depolarizing powers for linear and circular polar-
izations as

A =1- %(lal +1p) and  Ac=1—cl. (7.37b)

As a final remark, the depolarization powers A defined in Egs. (7.35) and (7.36)
vary from O, for nondepolarizing samples, to 1 for totally depolarizing ones, while
the opposite holds for the general depolarization index Py defined in Eq. (7.11).

7.2.3 Decompositions into ‘“Elementary’’ Component Matrices

Ideally, any polarimetric measurement, once obtained, should be interpreted by fitting
to the measured Mueller matrices the results of numerical simulations based on a
relevant model. Unfortunately this is not always possible, especially with complex
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and/or disordered samples such as biological tissues. These exhibit depolarization
in virtually all experimental conditions and have several of the above-described
polarization effects occurring simultaneously, making accurate measurements and
interpretation of the measured data difficult. The use of Mueller polarimetry followed
by additional methods of results extraction and interpretation is thus essential in tissue
studies.

It is thus desirable to develop and use novel approaches to “classify”” and inter-
pret the measured tissue Mueller polarimetry data, for example by determining its
retardance and depolarization properties (in addition to the immediately and unequiv-
ocally accessible diattenuation and polarizance). Unfortunately, retardance and depo-
larization cannot be uniquely determined from a given Mueller matrix, except in very
special cases of “pure” retarders or depolarizers.

The most usual way to process complex Mueller matrices then consists of decom-
posing them into products of elementary matrices with well-defined polarimetric
properties and gleans quantitative parameters, meaning biophysical metrics from
these. In the following, we first briefly list the form of these elementary matrices, and
then outline the most commonly used procedures to decompose any Mueller matrix
into various combinations (generally products) of elementary matrices. Note that
these mathematical analysis methods do not imply that the sequence of polarization
alterations, as described by a particular decomposition product, actually happens in
tissue; rather, we are simply stating that the end result of the proposed decomposition
sequence is “equivalent” to the experimentally measured one and lends itself to easier
extraction of meaningful biophysical quantities.

Product decompositions thus represent an arbitrary Mueller matrix as a product
of elementary Mueller matrices—diattenuators, retarders, and depolarizers. These
decompositions are characterized by the number of elementary components and their
respective positions in the multiplication. The order of the components is important
since generally depolarizer matrices commute neither with diattenuator nor with
retarder matrices. In principle, product decompositions are better suited to describe
physical situations in which the beam interacts sequentially with different parts of the
sample, each of which is characterized by a well-defined fundamental polarization
property. Although this generally does not happen in biological tissues (where the
effects more likely occur simultaneously), product decompositions have nevertheless
been shown to yield accurate and reliable measures of tissue polarization properties.

7.2.3.1 Forward and Reverse Product Decompositions into Three Factors All
these decompositions describe the input matrix M as a product of a diattenuator, a
retarder, and a depolarizer. Actually with three elementary component types, there
are six different possible orders that yield slightly different results, as in general,
matrices do not commute [32]. Among these, the most widely used choice is that of
Lu and Chipman [24]:

M = MAPMR'MD’ (738)

where the “special” symbol Mp has been used for the depolarizer. Actually, for
this decomposition to be quite general if Mp and My represent homogeneous
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diattenuators and retarders, then the depolarizer cannot be a “pure” depolarizer of
the form defined in Eq. (7.34), as the product matrix M would exhibit no polarizance
and three parameters would be missing. As a result, in general the “depolarizer” has
nonzero polarizance and its elementary matrix is of the form

1 0T
M,p= < > . (7.39)

P m,

With these assumptions, the approach is numerically stable and always provides
physically realizable elementary matrices M p, My, and My,. This procedure is
thus very convenient and is widely used for the phenomenological interpretation of
experimental (or even simulated) Mueller matrices. Moreover, its accuracy has been
checked for well-characterized controlled systems (phantoms) as described in detail
in Section 7.4.

What happens if the order of the elementary components is changed [32]? Simple
matrix algebra shows that the above results are easily generalized to two out of
the other five possible product sequences, namely those for which the diattenuator
precedes the depolarizer:

M =M'gM ,pM'p or M = MXP MgM;{. (7.40)

More precisely, the depolarizer matrices keep the form defined in Eq. (7.39) and the
M’ and M" matrices are deduced from those provided by the standard decomposition
(7.38) by unitary transformations.

This kind of simple generalization is no longer valid for the three remaining cases
in which the depolarizer precedes the diattenuator. Morio and Goudail [33] introduced
a “reverse” decomposition procedure for these three cases with the same definition of
the depolarizer, but this procedure could lead to unstable or even unphysical results
in case of very strong depolarizations. This issue has been solved by Ossikovski
et al. [34] assuming that when the depolarizer precedes the diattenuator, the former
features zero polarizance. The “standard” reverse decomposition takes then the form

M = MDMRMD/A, (741)

with a depolarizer matrix of the form

1 ot
My, = . (7.42)
0 m,

As in the case of “direct” decompositions defined by Egs. (7.38) and (7.40), the
matrices of the three possible “reverse” cases (with the depolarizer preceding the
diattenuator) are deduced from one another by simple orthogonal transformations.
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FIGURE 7.6 Polarimetric images of a pig skin sample in backscattering geometry taken at
600 nm. Field of view 5 x 5 cm?. Top: diattenuation and depolarization images obtained with
the reverse decomposition via Eq. (7.41). Bottom: diattenuation and depolarization images
obtained with the Lu-Chipman decomposition. Color bars give the scales for scalar diattenu-
ation D (left) and depolarization power A (right). Adapted from Reference 35. (For a color
version of this figure, see the color plate section.)

The reverse decomposition procedure is also stable and always provides physically
realizable Mueller matrices for the elementary components.

Figure 7.6 shows an example of the results provided by direct and reverse decom-
positions on a pig skin sample. The depolarization images are almost identical, which
support the intuitive assumption that depolarization is due to multiple scatterings
occurring inside the sample. Conversely, the diattenuation images are quite different
for the two decompositions, the reverse one giving sharper details and larger absolute
values. As the diattenuation is likely to be due to interface effects (diattenuation inside
biological tissues is typically very small in the visible, as absorption is essentially
due to hemoglobin, which is microscopically isotropic), the reverse decomposition
apparently yield a better image of such effects, with a clearer correlation to the details
of the depolarization image. These details are absent in the diattenuation image pro-
vided by the forward Lu-Chipman analysis (Eq. 7.38). The reverse decomposition
seems a priori better suited to characterize the surface of such samples.

In summary, three-factor product decompositions may be very useful when study-
ing turbid media, as they yield numerically stable and accurate information about the
samples, provided these samples can be reasonably described as stacks comprising
a depolarizer (typically the turbid medium), a retarder and a diattenuator in a given
order. For isotropic tissues, the latter two effects are expected to occur essentially at
the sample surface, while for samples like striated muscles birefringence is expected
to arise from the bulk of the sample; consequently, three-factor decompositions may



POLARIZED LIGHT FUNDAMENTALS 261

not be necessarily well suited to all cases, a situation that justified the development
of the alternative decompositions we outline in the following sections. In general
though, it must be borne in mind that whatever decomposition approach is chosen,
the claim is not that its physical embodiment is “what actually happens in tissue”;
rather, this simply provides a mathematically “equivalent” framework that enables
easier extraction of meaningful (and hopefully accurate) biophysical metrics that are
contained but otherwise hidden in the complex Mueller matrix of biological tissues.

7.2.3.2 Symmetric Decomposition In symmetric decompositions, the input
Mueller matrix M is decomposed into a product of five factors [36,37]:

M = MDZ‘MRZ‘MdA . MR]'MDl’ (743)

where Mpy; and Mp,, represent homogeneous diattenuators, Mgp; and Mg, homo-
geneous retarders, and M, a diagonal depolarizer as per Eq. (7.34). The central
position of the depolarizer in the symmetric decomposition can be very useful for
samples which can be viewed as purely depolarizing media bounded by tilted input
and output interfaces: in this case the diattenuation and retardation effects are likely
to occur at the output interfaces and the depolarization in between. Moreover, in many
cases of practical interest the Mueller matrix of the depolarizer is indeed diagonal.
However, the relevance of this decomposition for tissue polarimetry may be limited
by two issues which may frequently in practice:

* Asdiscussed in Section 7.2.2.4, the Mueller matrices of depolarizers consisting
of spherical scatterers are diagonal (Eq. 7.34) with a = b. In presence of such
“degeneracy” of the depolarizer eigenvalues, the Mueller matrices Mg, and
Mg, of the retarders commute with My, (i.e., Mg;Mya = My, Mg;) and thus
cannot be unambiguously determined (only their product is unambiguous), and
some a priori knowledge of these “retarders” is required. This issue has been
raised in a work devoted to experimental validation of this decomposition [38].

* In contrast with the decompositions into three factors, the symmetric decompo-
sitions are not “universal,” as there is a class of Mueller matrices, the so-called
“non-Stokes diagonalizable” Mueller matrices, for which these decompositions
cannot be applied. For such matrices there is one, and only one totally polar-
ized input Stokes vector which retains its full polarization (DOP = 1) after
transformation by the Mueller matrix [38, 39]. Analogous to the degenerate
depolarizers, such matrices are not some artificial theoretical “curiosities,” but
do occur in nature (e.g., in scattering cholesteric structures such as shiny beetle
cuticles, observed in backscattering [40]).

7.2.3.3 Logarithmic Decomposition The logarithmic decomposition was pro-
posed recently as a complementary alternative to the standard product decompositions
for spatially homogeneous systems where the polarimetric effects occur simultane-
ously and “continuously” during the propagation of light and not sequentially as
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implied by the product approaches above. This decomposition is a natural gener-
alization [41, 42] of the classic differential matrix formalism [43] applied to the
depolarizing case. The approach, based on the physical picture of a continuously
distributed depolarization, parallels and complements the product decomposition
approach whereby depolarization is modeled as a spatially localized “lumped” phe-
nomenon. In particular, the differential matrix methodology appears particularly well
adapted to the phenomenological description of the scattering in turbid media such
as biological tissues.

For a beam propagating along z, the Mueller matrix M(z + dz) is deduced from
M(z) by

M(z + dz) = U(d2)M(2) = [I + mdz], (7.44)

where I is the identity matrix, U(dz) is the differential propagation matrix, and the
differential matrix m can be defined in the most general case as

a ﬂ// }’/, 5//

/ a 14} v//
m=|? © . (7.45)

Equation (7.44) can also be rewritten as

M _ v (7.46)
dz

Let us first assume that the medium is nondepolarizing and postpone the discussion
of the effects of depolarization. Then it can be shown that m features additional
transposition symmetries, namely g'= g”, y'=y", 6'= 6", u'= 4", and so on [37].
Then, the differential propagation matrix U(dz) takes the form

1 pdz  ydz oédz

dz 1 dz vdz
Udz) = [+ mde] ~ (1 + ado)| ? H
ydz —pdz 1 ndz

6dz —vdz —-ndz 1

which shows that adz is simply the differential attenuation of unpolarized light over
the distance dz. Moreover, due to the small size of the nondiagonal elements of
mdz (due to the magnitude of dz itself), these elements describe the differential
polarimetric effects due to the propagation over the distance dz as follows [43]:

pdz is the differential linear diattenuation along the x—y laboratory axes.

ydz is the differential linear diattenuation along the +45° axes.

odz is the differential circular diattenuation.

ndz is the differential linear retardation along the x—y axes.
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* vdz is the differential linear retardation along the +45° axes.
® udz is the differential circular retardation.

Another essential consequence of the smallness of the off-diagonal elements of the
U(dz) matrices is that they always commute (provided dz is small enough). Indeed, a
straightforward matrix calculation shows that to first order

Ul(dZ)UZ(dZ) = [I + mle] [I + mde] = [I + (ml + mz)dZ] = UZ(dZ)Ul(dZ) (748)

In other words, the differential approach is well adapted to the propagation of
light media featuring simultaneously various polarimetric properties, by eliminating
the ambiguities related to the noncommutation of Mueller matrices describing finite
instead of differential effects.

Note that in the general case of longitudinally inhomogeneous medium, m is
a function of the propagation coordinate z (the direction of light propagation). If
the medium can be considered homogeneous in the z direction over a distance
L, expression (7.46) can be easily integrated to give

M = exp(m L) = exp(L) (7.48)
which can be also written as
InM) =mL = L. (7.49)
This expression indicates that the fundamental properties of the medium under
consideration, contained in m, can be deduced from the logarithm of the related
Mueller matrix if the total thickness L is known.

In the presence of depolarization, the matrix m takes its general form (7.45) and
can be decomposed into a sum of two matrices

m=m, +m,, (7.50)

where m, has the same shape and symmetry properties as the m matrix defined in
Eq. (7.45) (and is thus nondepolarizing). More specifically

20 ﬂ, +ﬂli J/l +]/" 5, +5"
1 ﬂl + ﬂ// 20!1 u— /4, V- V, q
= = an
m™ 5 y' + 7/// Ml _ /4// 2a2 n— ”l’
§+8" V=V '7, _ "IH 2(13
0 ’ 7 ’ " ’ " (7.51)
p—=p" y-y &-96
1 ,B _ ,B, 0 Ml + M" V, + V"
m, = -
u 2 7/// _ yl MN + /"/ 0 71, + ’7"
5// _ 5/ V” + V, n// + ’,]l O
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Then m,, thus represents the mean values of the six elementary polarization
properties, while m,, represents their respective uncertainties due to depolarization
[41,42].

The elementary polarization properties of the medium can thus be directly deter-
mined from the logarithm L of the Mueller matrix M, by constructing the Lorentz
antisymmetric, L, and symmetric, L, components of L (L =L, + L,,), respectively,
as follows:

L, = %(L -GL'G) and L,= %(L +GL'G), (7.52)

where G = diag(1l, —1, —1, —1) is the Minkowski metric tensor.

Apparently, for a depolarizing medium, the off-diagonal elements of L, represent
the mean values of the six elementary properties accumulated over path length L, while
the off-diagonal elements of L, express their respective uncertainties. Further, the
main diagonal elements of the matrix L (a,, a,, and a3) represent the depolarization
coefficients (after the subtraction of the isotropic absorption a from the diagonal)
along the xy, +45°, and circular axes [42]. The accumulated polarization parameters
(intrinsic properties integrated over the path length L) can be determined from the
elements of the L,,, and L,, matrices as

¢ Integrated dichroism

— 2 2 2
d=\JL2 ,+ 12 5+ 12, (7.530)

¢ Integrated depolarization

A= %ml +ay+ag). (7.53b)

e Linear retardation

— 2 2
8= 1[I2,,+12, (7.53¢)

1

¢ Optical rotation

Total retardation

R =152+ 4y2. (7.53¢)

The corresponding uncertainties (standard deviations) of the parameters, diattenu-
ation, linear retardance, and optical rotation (and total retardance) can also be derived
employing the same set of equations (7.53) on the off-diagonal elements of the
matrix L.
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The conversion relationships between the medium polarimetry characteristics
defined in the polar decomposition formalism (forward decomposition and its vari-
ants, reverse and symmetric decomposition) and those in the logarithmic decom-
position (differential matrix formalism) also worth a brief mention here. In fact,
the Mueller matrix corresponding to each accumulated polarization parameter (ele-
ments of the differential matrix m scaled by path length L) can be obtained from
the solution of Eq. (7.46) and the eigenvalues of m. These Mueller matrices for
each of the individual polarization effects can be related to those defined in the
polar decomposition formalism, to yield conversion from one set of parameters to
the other:

o DM (7.54a)

log __ _ 2 2 2
D'°% = tanh(d) = tanh [\/Lm’12 +L2 L,

Alog — | _ %(e_"l + e 4 e o Apol. (7.54b)

Note that the above two conversion relations, transforms dichroism into diatten-
uation (7.54a) and converts the three logarithmic depolarization coefficients into a
single “conventional” net depolarization (7.54b). However, no such conversion is
required for retardance.

The accuracy of this decomposition has been successfully tested with experimental
Mueller matrices of phantoms consisting of dispersion of polystyrene microspheres
in sucrose containing polyacrylamide and Monte-Carlo simulation, nematic liquid
crystal plates [44] and adhesive tapes [42] and samples with diattenuators embedded
in scattering and optically active media [45], to vary the commutation properties of the
elementary polarization components. Some of these validation studies are discussed
in Section 7.4.2.2.

7.2.4 Summary

In this section, we introduced the Stokes Mueller formalism, which provides a math-
ematically sound and physically intuitive description of all light polarization states,
including partially polarized ones, which are particularly relevant for tissue polarime-
try. The essential polarimetric properties, namely the diattenuation, the polarizance,
the retardation, and the depolarization have been defined for “simple” polarimetric
objects.

While Mueller matrices provide the most complete polarimetric characterization
of any samples of interest, in vast majority of cases the most interesting information
about these samples—such as those relevant to diagnostics for biological tissues for
example—remain “hidden” in the 16 elements of the matrices. The decomposition
procedures outlined in this part allow one to “extract” this information, provided the
various decomposition procedures are used wisely.

On the one hand, each procedure is based on a specific description or representation
of the sample, for example as a “stack” of simple elements following each other in a
well-defined order (product decompositions). Of course, the parameters provided by
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such procedures may be accurate only if the sample is actually of the form assumed
by the decomposition, which is seldom the case. So the question then becomes
whether the assumed physical representation implied by a specific mathematical
decomposition can be considered as is “equivalent” to the original tissue? A “toolbox”
of several procedures is then needed to decide how critical this issue really is, and
how to cope with it.

Another important feature is the stability of the results. As a rule of thumb, the
more factors are involved, the more unstable these factors may be for a given product
(the initial Mueller matrix M). Commutation (multiplication order) issues may also
arise, which may compromise the possibility to actually determine the values of
some factors. For example, the stability and uniqueness of the solution provided by
the three-factor decompositions (the Lu Chipman in its forward and reverse forms) is
an advantage of these “simple” decompositions over the more complex symmetrical
ones. This may explain why the former are the most widely used, even though they
may provide only “effective” values of diattenuation, retardation, and depolarization
in many cases, and all the more so in biological tissues.

In contrast, the logarithmic decomposition seems very appropriate to the charac-
terization of tissues by its very definition, as these are turbid media with volumetri-
cally “distributed” polarimetric properties (i.e., effects occur simultaneously and not
sequentially as matrix multiplication/product decompositions imply). Moreover, this
decomposition is intrinsically stable and has been successfully validated in several
complex situations. One limitation, which may be overcome soon, is that if has been
developed and tested only in the forward scattering direction, while for diagnostic
purposes the backward geometry is typically more interesting and practical.

7.3 INSTRUMENTATION

A huge variety of polarimetric instruments have been developed, to meet the many
different requirements related to the studied objects. In this part, we outline the
general principles behind the design of polarimetric instruments, mention the various
optical polarization components, and provide illustrative examples of actually used
instruments, without attempting to be exhaustive.

7.3.1 General Principles

7.3.1.1 Overall Scheme of Polarimetric Instruments A generic polarimetric
instrument is schematized in Figure 7.7. The light emitted by one (or possibly sev-
eral) source(s) traverses a Polarization State Generator (PSG) and an illumination
optical system (IO) which define the polarization state and other characteristics of
the beam which impinges on the sample (Sp). The light emerging from the sample
in a particular direction of interest (shown in transmission for illustration purposes
in Figure 7.7) is then captured by another optical system (DO), traverses a Polar-
ization State Analyzer (PSA) whose transmission depends on the light polarization,
and is eventually detected by one (or possibly several) detectors (D). Though in
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S PSG 10 Sp DO PSA D

s )

FIGURE 7.7 Block diagram of a generic polarimetric instrument. S, source(s); PSG, polar-
ization state generator; 10O, illumination optics; Sp, sample; DO, detection optics; PSA, polar-
ization state analyzer; D, detector(s). Transmission geometry is illustrated above, but polariza-
tion analysis in many other detection directions is often possible and/or desirable.

practice the PSG, the PSA, and the other optics may overlap each other, either
physically or conceptually, these elements are represented as separate as they play
different roles.

The source(s) and detector(s) may be point-like or extended, and the other optics
may implement full field imaging or pointwise measurements, the latter possibly with
spatial scanning. Moreover, the instrument may be designed for single or multiple
wavelength operation, with various requirements on acquisition speed or acceptable
signal-to-noise ratio (SNR). Of course, the polarimetric elements composing the PSG
and the PSA must also be chosen to satisfy the same requirements as the other optics.
For example, their geometrical éfendue and/or spectral bandwidth must be sufficient
if full field imaging and/or multispectral operation are required. These issues will be
briefly discussed later for various optical elements used for polarization studies.

7.3.1.2 Polarization Modulation and Analysis Sequential polarization mod-
ulation and analysis. Among the various schemes actually used for polarization
modulation by the PSG and analysis by the PSA, the conceptually simplest is the
modulation and analysis using discrete polarization basis states. In this scheme,
the PSG sequentially generates m different polarizations, represented by m physical

=

FIGURE 7.8 PSA based on a rotatable retarder (R) preceding a linear polarizer (P) and the
detector (D). The pass axis of P is aligned along x, while the fast axis of the retarder makes a
variable angle 6 = w ¢ with the x-axis.
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Stokes vectors Sj incident on the sample, which can be considered as the columns of
areal 4 X m matrix, the modulation matrix W. The PSG is said to be

® Incomplete if m < 4,

e Complete if m = 4 and the four Stokes vectors Sj are linearly independent,
meaning that the device correctly “samples” the whole polarization space. The
4 X 4 matrix W is then invertible.

* Redundant, if m > 4 and the Sj vectors form a complete basis of the polarization
space. In this case, the instrument “oversamples” this space, which is a possible
way to reduce the noise or the systematic errors. In this case, the 4 x m W matrix
possesses a pseudo-inverse.

Quite similarly to PSGs, a PSA can be characterized by its analysis matrix A.
When this PSA is illuminated by a light beam emerging from the sample whose
Stokes vector is S, it generates a set of n signals /; (the eventually detected intensities),
each of which is obtained by passing the light through a “polarization filter”” described
by a Stokes vector S!. Mathematically this filtering corresponds to taking the scalar
product of the incoming and the filter Stokes vectors:

Ii = S,i . S. (7.55)

The I; form a signal vector I of dimension n, related to the Stokes vector S emerging
from the sample by

I=A-S. (7.56)

In a way analogous to PSGs, PSAs may be incomplete, complete, or redundant
depending on the dimension of the polarization space spanned by the line vectors S/
of A.

In a generic polarimeter as schematized in Figure 7.7, each Stokes vector S;
generated by the PSG is transformed into MS;, (where M is the Mueller matrix of
the sample) and generates a corresponding signal vector I;. When the index j spans
the range from 1 to m, these signal vectors form the columns of matrix B, as for each
of the incident PSG states the PSA produces n signals. The raw signal matrix can be
written as

B=A-M-W. (7.57)

Obviously, in order to retrieve useful information about M from the raw data B,
the matrices A and W must be known—the system must be calibrated. Moreover,
provided both the PSG and the PSA are complete or redundant (i.e., the instrument is
a Mueller polarimeter), the sample Mueller matrix M can be extracted from the raw
data B by inverting Eq. (7.57):

M=A""-B-W (7.58)
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Periodic time modulation. If the PSGs and/or the PSA polarimetric properties
vary periodically in time at angular frequency w, for example due to the presence of
rotating elements (see Figure 7.8), the detected signal(s) also vary periodically at the
same frequency, allowing decomposition by Fourier analysis into harmonics; exper-
imentally, this enables improved noise rejection and higher SNR via synchronous
phase-sensitive detections (e.g., through lock-in amplification). The basis states of
the PSG and/or the PSA are simultaneously encoded in different Fourier components
if the detected signal(s). The modulation and analysis matrices of the PSG and the
PSA are then defined in frequency (Fourier) space. We will not explicitly cover the
(quite cumbersome!) equations giving a rigorous description of polarization encoding
and/or detection in Fourier space, but a few simple examples of very widely used
setups based on this scheme will be described in Section 7.3.2. Generally, temporal
polarization modulation is easier to implement with point-like measurement systems,
as detection schemes with imaging cameras are more challenging to modulate in
synchrony.

Spectral or spatial modulation. The idea behind these schemes is quite similar
to above. If the PSG and/or the PSA exhibit very fast (and well known!) variation
of their characteristics with wavelengths while the Mueller matrix of the sample is
constant or varies much more slowly, then the Fourier analysis of the signal can be
realized in wavelength space. This scheme is very appealing in realizing “snapshot”
spectroscopic polarimeters. The same idea may be applied for imaging applications,
by imposing very fast variations of the polarization response of the PSA in the image
plane, with subsequent Fourier analysis to extract the much more slowly varying
polarization properties of the object under study.

7.3.1.3 Design and Optimization Considerations Here we address the following
question, which is of importance when designing a complete polarimeter and has been
widely discussed in the literature [46—52]; how can we use the degrees of freedom
we have on the actual matrices W (through the judicious selection of PSG input
states) and A (through the judicious selection of PSA filter states) for a given type of
instrument to minimize the noise on the final matrix M, in the presence of additive
noise on the raw data B?
We first discuss this issue for complete PSAs. Equation (7.56) can be rewritten as

I=A-S N S=AT1.L (7.59)

If the raw measured intensity vector I is affected by an additive noise 61, this noise
will introduce an additive noise 6S in the value of S, given by

58S =A"1. 5L (7.60)

The rms noise on the raw data is nothing else but the usual Euclidean norm [|51||
of 6I. With proper definition of the norm of matrices (the largest of their singular
values), we get an upper bound of the noise on the S vector:

IsSIl < 1A~ [118Tl- (7.61)
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If the noise ||61|| on the raw measurements does not depend on the exact configu-
ration of the PSA, as is usually the case, a good criterion to optimize the design of a
complete PSA consists in minimizing the norm |A~"|| [47].

Actually this criterion tells us that A is “as far as possible from singular” and thus
is optimally conditioned to be inverted as required to extract S (which contains the
information about the sample Mueller matrix M) from I. To achieve this optimization,
the PSA basis states must be “as different as possible” from each other. For complete
PSAs, this condition is achieved when the four basis states are at the tips of a regular
tetrahedron on the Poincaré sphere [47]. This simple “geometrical” criterion can be
generalized to the case of redundant PSAs, from which noise propagation is optimized
when the basis states form simple symmetric polyhedra (such as an octahedron for
n = 6, a cube for n = 8,and so on...) at the surface of the Poincaré sphere [52].
Moreover, when A is optimized, the noise on S is not only minimized, but it is also
most equally distributed among the various components of S [48].

On the other hand, this general criterion may not be valid if one is interested
in specific components of S, for which the noise can be minimized further at the
expense of increasing it for other components (presumably less relevant in a particular
application).

These results are easily generalized from PSAs to complete Mueller polarime-
ters: not surprisingly, the noise is minimized and most equally distributed on all M
components if both |[W~!|| and ||A~!|| are minimized [49-51].

7.3.1.4 Complete versus Incomplete Instruments At first sight, one would
assume that complete or redundant polarimeters are always superior to incom-
plete ones, as they are the only polarimeters able to provide full Mueller matrices
upon mathematical analysis. However, for practical applications, complete Mueller
polarimeters are not always the best choice, for two reasons:

1. Complete polarimeters are necessarily more complex than incomplete ones,
and it may be difficult to make them compliant with demanding experimental
requirements in terms of speed, spectral or angular bandwidth, and the like
which may be imposed by the envisioned application.

2. If the polarimetric response of the sample under study is known to be of a
specific form, then incomplete polarimeters may be sufficient, and even better
than complete ones, as they can be designed to optimize the SNR and accuracy
of the measurements of the Mueller matrix elements of interest.

The best practice, whenever possible, is to explore the polarimetric response of
the samples of interest with complete instruments, and then, once the necessary
polarimetric measurements are defined to make the device to be used in practice
(e.g., for diagnostic purposes) as simple and rugged as possible.

As discussed below, for bulk biological tissues the “hierarchy” of the polarimetric
effects is strong depolarization, modest linear birefringence, very weak optical activity
(circular birefringence), and essentially nonexistent diattenuation/dichroism (either
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linear or circular). In the absence of linear birefringence, tissues are essentially pure
depolarizers, with diagonal Mueller matrices featuring typically my, = m33 # niyy
(i.e., often (but not always!) linear depolarization is independent of orientation and
is different from circular depolarization). Accurate determination of these elements
can be done by incomplete polarimeters. On the other hand, if two of the three
mentioned characteristics are simultaneously present (e.g., linear birefringence and
depolarization, or depolarization and optical activity) and are of interest, then the
determination of the full Mueller matrix and subsequent decomposition of this by the
procedures outlined in Section 7.2 may be unavoidable.

7.3.2 Commonly Used PSAs

The many different designs for PSAs can be classified according to several pos-
sible criteria, with significant overlaps. Note that in principle, any PSA may be
converted into a PSG (and the other way around) by interchanging the source(s) and
the detector(s). In the following, after a short description of the usual polarization
handling components, we present commonly used polarimetric PSAs, by increasing
“complexity” starting from those based on simple linear polarizers.

7.3.2.1 PSAs Based on Linear Polarizers Linear polarizers are the most basic
polarization handling components, and they are ubiquitous in polarimetric setups. In
practice, these elements are of two main types:

® Dichroic polarizers, consisting of thin sheets of (typically plastic) materials
which exhibit full absorption for one polarization and typically 70-85% trans-
mission for the other. These polarizers typically feature quite broad angular
acceptances, well adapted for imaging applications, but somewhat limited spec-
tral bandwidths (the visible or the NIR for example).

* Polarizing beam splitters, which transmit two linear orthogonal polarization
in different directions. These elements are made of complementary prisms
of crystalline materials (Glan or Wollaston prisms) or glass with multilayer
dielectric coatings. Crystalline beam splitters feature very wide spectral but
rather narrow angular bandwidths while the opposite holds for glass beam
splitters.

Sequential PSAs. As immediately obvious from the very definition of Stokes
vectors (Eq. 7.7a), a single linear polarizer coupled with a single detector allows
the determination of the I, O, and U (but not V) components of the Stokes vector
S of incoming light propagating along the z axis, provided the polarizer can be
oriented sequentially along x, y, +45°, and —45° in the transverse plane to provide
the intensities 7, Iy, Ip, and I, respectively.

PSAs with continuously rotating polarizers. Alternatively, if the polarizer rotates
continuously at angular frequency o, it transforms the Stokes vector S that traverses
1t 1nto

S'(t) = My p(1,1,00) S, (7.62)
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where M (1, 0, wt) is the matrix of a linear diattenuator defined in Eq. (7.24) with
7 =1 and D = 1 (perfect polarizer) oriented at § = wt. Equation (7.62) above can
then be rewritten as

1 cos 2wt sin 2wt 0Y( 1
) 1 | cos 2t cos? 2wt cos2mtsin2wt 0 || O
S == . . .2 . (7.63)
2| sin2wt  cos 2wt sin 2wt sin” 2wt 0||U
0 0 0 0J\V
The detected signal I is the first component of ()
I, (t) =1 + QcosCwt) + U sin(wt) (7.64)

from which I, Q, and U are immediately extracted by a straightforward Fourier
analysis, as the amplitudes of the constant term and the two in-phase and quadrature
components at frequency 2w.

7.3.2.2 Combinations of Linear Polarizers and Constant Retarders Constant
retarders are also very commonly found in polarimetric setups, to generate and
analyze elliptically (circularly) polarized states. For these components, there are also
two basic technologies:

® Retardation plates. These plates are slabs of birefringent materials (typically
quartz or mica) which introduce a phase retardation A¢p = 2 - Dn - d/ A between
their two orthogonal eigenpolarizations (An is the refractive index difference,
d the plate thickness, and A the wavelength). The natural dispersion of A¢ due
to the 1/4 dependence can be reduced, around well-specified wavelengths, by
assemblies of two plates with their slow axes at 90° to each other. Generally,
the angular acceptance is rather small, except for very thin plates (called “true
zero order” plates).

® Fresnel rhombs. These devices are based on the very achromatic phase retar-
dation introduced by a total internal reflection between in-plane and out-of-
plane polarizations. The spectral bandwidth may be huge (essentially equal
to the transparency window of the material) but the angular acceptance is
again very small. These components are thus very well suited to spectro-
scopic point-sensing polarimeters but present formidable challenges for imaging
applications.

Sequential PSAs with a linear polarizer and a removable QWP. As noted
above, linear polarizers alone cannot measure the V component of the incoming
Stokes vector S. The conceptually simplest way to address this limitation is to add
to the measurements performed with the polarizer alone another two measurements
performed with a QWP (a retarder with 90° retardation) with its axes set at +45°



INSTRUMENTATION 273

from those of the polarizer, to convert the linear polarizer into right and left circular
polarizers. As a result, such a system may be operated

® in redundant mode [53], by taking into account the full set of six measurements
Uy, Iy, Ip, Iy, I}, Iy) and solving the overdetermined system of six equations
for the four unknowns 1, Q, U, V (a particularly simple example of rectangular
matrix A):

L=1+Q1,=1-QIp=1+Uly,=1-UlI =1+V,Ig=1-V, (1.65)

* in complete, nonredundant mode, by skipping the measurements of /_,s. and
I and relying on the fact that the total intensity can be written as

I=I+1,=Ip+Iy =1 +Ig (7.66)

As mentioned earlier, the nonredundant scheme is obviously faster but the accu-
racy obtained with the redundant mode may be significantly better due to possible
systematic errors which may be “averaged out” by increasing the number of mea-
surements.

Sequential PSAs with a linear polarizer and a rotatable retarder set at discrete
azimuths. In this kind of PSAs, the light to be analyzed passes through a rotatable
retarder (R) and then a polarizer (P), which can be assumed to be aligned along
the x axis without loss of generality. The light polarization is analyzed by recording
the detected signal while the angle 8 = w t between the fast axis of the retarder and
the passing axis of the polarizer varies.

Upon reaching the detector, the Stokes vector S emanating from the sample of
interest is transformed into

S,(t) = MLD(17 1, O) MLR((S, 9) S, (767)

where 6 is the retardation of R. For a fixed value of 6, the detected intensity I, varies
as a function of 6 according to

In®) =1+0Q [0052 g + sin? g cos 40] + Usin® g sin4f — Vsinésin20  (7.68)
When the retarder azimuth sequentially takes n discrete values 6;, the correspond-

ing intensities are given by the formula above, which can be rewritten in matrix form
to explicitly show the analysis matrix A:

[ 28 228 228 . .
I 1 cos 5 +sin” 5 cos 0, sin 5 sin 460, sinésin26, ]
6 .26 .26 . . .
I 1 cos?2 +sin”2cos@, sin”2sindd, sinésin26, 0
2= 2 2 2 (7.69)
U
I . . . o Vv
" 1 cos? g + sin? g cosf, sin’ g sin4d, sindsin26,
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If n = 4, the PSA is complete provided § is different from pz. Moreover, ||A™!||
is minimized for 6 = 132° and 0, , = £51.7 ° and 03 4 = £15.1° [47]. The a priori
surprising value of 132° stems from the criterion cited above: the basis states of the
PSA must form a regular tetrahedron on the surface of the Poincaré sphere. It turns out
that to do so, for example, a quarter wave is not sufficient: such a component would
transform the initial linearly polarized state, into other states by rotations of 90° about
various axes. As a result, these states would be confined to the same hemisphere as
the initial linear state and would never form a regular tetrahedron. This does not mean
that QWPs cannot be used in actual implementations of PSAs (and it is often the case
in practice) but the noise in the final result may be slightly larger than with 6 = 132°.

PSAs with a linear polarizer and a continuously rotating retarder. As the
retarder is continuously rotated at angular frequency w, Eq. (68) above immediately
shows that the only Fourier components with nonzero amplitudes are DC, sin(2wt),
cos(4wt), and sin(4wt). Calling these amplitudes Inc, Isp 4, Icaq» and Igy,, We obtain
their expression in function of S given in Eq. (7.70), which defines the analysis
matrix A of the PSA in Fourier space. Again this matrix becomes singular for
6 = pr, as expected: in this case, the retarder is either half-wave and provides no
sensitivity to the circularity component V; or “non-existent” (if p is an even integer)
and the PSA reduces to a fixed linear polarizer. Analogous to above, A is optimal
for 6 = 129°:

2(6
Inc 1 cos <§> 0 0 I
Isy,, ~ 0 0 0 —siné 0
= e (7.70)
Ieww | [0 sin (§> 0 o |lu
Iuo | o 0 sin? (g) o LV

Practical considerations. PSAs and PSGs comprising a linear polarizer and a
rotatable retarder (often improperly called “compensator’) achieve complete polar-
ization generation and analysis with only two passive polarization elements. Due to
this simplicity, they are very widely used, with the two operation modes outlined
above, with the retarders rotating either stepwise (discretely) or continuously:

¢ Continuous rotation is usually preferred when the detector is fast enough, which
is usually the case for pointwise measurements requiring a single photodetector
or spectroscopic measurements with one-dimensional CCD arrays at the focal
plane of a spectrometer. In this latter case, the retarders must be reasonably
achromatic, like Fresnel rhombs or, to a lesser extent, “achromatic” retardation
plates made of stacks of elementary birefringent plates. Compared to step-
wise rotation, continuous retarder rotation is easier to implement and provides
shorter measurement times. However, in this configuration the PSG and the
PSA cannot be optimized independently of each other, due to possible “mix-
ing” of the Fourier components encoding the various polarization basis states.
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A typical choice is to rotate the PSG and PSA retarders at frequencies 3w and
Sw [50, 54].

¢ Conversely, stepwise rotation may be better suited for polarimetric imaging
applications, typically with two-dimensional CCDs. In this scheme, prior to
each image acquisition the retarders are set at the prescribed couple of azimuths
and left still during the camera integration time, until the full set of n X m raw
images are taken. For this polarimetric imaging, it is essential to use retarders
with wide enough angular acceptances. Image “wander” is frequently observed
in relation with retarder rotation, and must be corrected for by suitable imaging
treatment/analysis procedures.

¢ Continuous retarder rotation and Fourier analysis of the signal would be possi-
ble with two-dimensional CCDs, only for extremely fast CCDs (both in acqui-
sition and data transmission) and would require large computational power.
A practically easier alternative would involve stroboscopic illumination, syn-
chronized with the polarization modulation. This approach has already been
implemented for partial polarimetric measurements [55] but not for complete
Mueller polarimetry.

7.3.2.3 Combinations of a Linear Polarizer and Variable Retarder(s) Histori-
cally, the first variable retarders were the Babinet Soleil compensators, made of two
crystalline wedges which could slide with respect to each other, and which were
equivalent to a single birefringent crystal with variable thickness. Though still in use,
these devices have been largely replaced by others, of the two following types:

® Pockels cells. In these elements, a driving voltage is applied to two or four suit-
ably oriented crystals, to modify their birefringence, and the resulting retarda-
tion between two linear orthogonal eigenpolarizations. These devices typically
exhibit very fast time responses (in the nanosecond range, if a suitable voltage
driver is used), but they require high driving voltages (~200 V for A¢ = 180°
in the visible) and exhibit very small spatial and angular apertures. In practice
these devices can be used only with laser beams, and thus are included in PSGs
(but generally not in PSAs) when studying highly scattering samples like thick
tissues.

® Photoelastic modulators. These devices consist of a slab of glass (typically
fused silica) about 10 cm long. Piezoelectric transducers generate a sound wave
at frequency v, which, in turn, creates a time dependent birefringence in the glass
slab at the same frequency v, which can be used to modulate the polarization
of a passing light beam at v and its harmonics 2v, 3v... This effect is usable
if v is a sonic resonant frequency of the glass bar. Such resonances, extremely
narrow, typically lie around 50 kHz. As a result, polarimeters with photoelastic
modulators are typically operated with synchronous detection locked on the
modulator excitation and/or its harmonics. Such high frequency modulation
schemes reduce the 1/f and other noise sources thereby increasing the SNR,
an advantage which may be crucial when the available signal is low. This
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scheme is typically realized electronically with single point-sensing detectors,
but it can also be implemented optically, with a stroboscopic illumination of the
polarimeter to “freeze” the polarization at specific phases with respect to the
modulator excitation.

e Liquid crystals cells. In these components, a very thin (~10 pum thick) layer of
nematic liquid crystal is “sandwiched” between two glass plates with transpar-
ent electrodes. AC driving voltages up to 20 V are sufficient to modulate the
retardation over 360° or more. The angular acceptance of these devices is very
large (tens of degrees), making them very well suited for imaging applications.
On the other hand, the time response is slow (several tens of milliseconds) for
a significant shift in retardation. The spectral range is also limited to the visible
and the near infrared.

Polarizer and one variable nonrotating retarder. As these elements are typically
set at azimuths 45° apart from each other, we will assume without loss of generality
that the retarder is aligned along the x axis, and the polarizer at 45° without loss of
generality, as shown in Figure 7.9. The incoming Stokes vector S is transformed by
the variable retarder VR and polarizer into

S'(f) = My p(1, 1,45°) M, g(1,5(1),0) S, (7.71)

where 6(7) is the time-dependent retardation of the VR. The detected intensity is now

bm:%a+Umwm—vmmm) (7.72)

and does not depend on Q at all. This result is general: a PSA for which the only
variable parameter is the retardation of a VR set at constant azimuth is never complete.

Thus, the measurements provided by this setup have to be completed by other
measurements for Mueller matrix determination, for example, via a removable QWP

QWP VR P D

FIGURE 7.9 Scheme of a PSA composed of a variable retarder (VR), a polarizer (P), and
a detector (D). The VR has its fast and slow axes aligned with x- and y-axes, respectively,
and its retardation is varied to analyze the incoming beam polarization. The measurements
are performed with and without the removable QWP to allow complete determination of the
incoming beam polarization.
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in added at the entrance of the device. With this additional component, Eq. (7.71)
becomes

S'(f) = My p(1, 1,45%) M g(1, 5(£),0) My g(1,90°,45°)S (1.73)

which transforms the detected intensity into
QW 1 .
I37 (= 3 (I — Qsino(r) + Ucos 6(t)) (7.74)

and thus completes the determination of S when the retardation 6(7) is varied to
define the analysis matrix A. As mentioned above, the temporal evolution of 6 may
be essentially arbitrary for nonresonant devices like Pockels cells or liquid crystals.
For resonant devices like photoelastic modulators, the retardation varies sinusoidally
1n time:

8(t) = 8, sinwt. (7.75)

The Fourier expansions of the functions cos(éysinwt) and sin(6ysinwt) are well
known. Keeping the first three terms (DC, w, and 2w frequencies), we obtain

In() = %(1 + ULJy(8,) + 2J5(8y)cos2wt] — V[2J,(8y)sinart]),  (7.76)
IROE %(1 — Q[2J,(8p)sinwt] + ULJy(8y) + 2J5(8y)cos20t]),  (1.77)

where J,, are Bessel functions. The Fourier components at zero, @, and 2w frequencies
are the relevant quantities for the synchronous detection scheme generally used to
optimize the SNR. Analogous to the rotating retarder scheme, the expressions above
can be recast in terms of the system analysis matrix A, which is then redundant, with
six measured quantities (Ipc, I, Ico,» and the like with the QWP inserted) for the
four components of S.

Polarizer and two nonrotating variable retarders. This type of PSA is schema-
tized in Figure 7.10. The incoming light traverses two variable retarders, whose fast
axes are set at constant azimuths 6 and 6, from the x axis, then again a linear polar-
izer set along x before being detected. The Stokes vector S’ of the light reaching the
detector is now

S'(t) = M (1, 6,,0,) M g(1,6,,6,) S. (7.78)

The calculation is quite similar to the previous ones and will not be reproduced
here. The main result is that by varying the retardations 6; and 6,, it is easy to make
this device a complete PSA, provided the orientations 6, and 6, are properly chosen.
Actually, the best choice is 8, = 0° and 0, = 45°, as any arbitrarily chosen elliptical
“polarization filter” can be obtained by adjusting the retardations. This property is
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FIGURE 7.10 PSA composed of two variable retarders (VRi), a polarizer (P), and a detector
(D). The VR fast and slow axes are set at azimuths 6, and 6, with respect to the x axis and
their retardations 6, and 6, are varied in time to analyze the incoming beam polarization.

also valid when the device is used as a PSG, with a source replacing the detector
and the light travelling in the —z direction: such a PSG can generate any predefined
Stokes vector S.

Such versatility is not really needed to make complete Mueller polarimeters: as
long as the PSG and the PSA are each able to generate four linearly independent
basis states, complete measurements are possible (W and A are invertible). However,
potential SNR improvements inherent in no-moving-mechanical-part polarimeters
(often with synchronous detection schemes) offer significant advantages in low-signal
situations often encountered in biomedicine. Further, the possibility to generate any
state by the PSG and to project the emerging state on any polarization state at the
PSA opens interesting possibilities for polarization contrast optimization of different
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FIGURE 7.11 Three PSA setups implemented for OSC imaging. Left: a sequential PSA.
The incident beam traverses a ferroelectric liquid crystal (FLC) equivalent to a half wave
plate which can be rapidly switched between two azimuths separated by 45°, and a linear
polarizer (P) before reaching the camera (C). This system allows sequential acquisition of the
orthogonally polarized images with switching times less than 1 ms [58]. Center: the incoming
beam is separated into two beams with orthogonal polarizations by the Wollaston prism (WP),
to form two polarized images on the sensor (S) via the lens (L) [59]. Right: the two orthogonal
polarizations are separated by the polarizing beam splitter (PBS) and form two images on two
separate cameras C1 and C2 [60].
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tissue states to be distinguished from each other (e.g., cancerous and noncancerous
tissues) without measuring the full Mueller matrices [56,57].

7.3.3 Examples of Tissue Polarimetry Instruments

In this part, we illustrate the above considerations by giving some examples of
polarimetric instruments, without attempting to exhaustively describe the very wide
variety of such devices which have been successfully implemented.

7.3.3.1 Orthogonal State Contrast Imagers Orthogonal state contrast (OSC)
imaging (which has also been called, somewhat improperly, DOP imaging) is quite
a simple, and thus experimentally very appealing polarimetric characterization tech-
nique, whenever applicable. In this modality, the sample is illuminated with linearly
polarized light and imaged with two polarization filters, one parallel and one perpen-
dicular to the illumination polarization. The two images, Ij; and I | , are then combined
to form the OSC image:

Iy =1,

losc = (7.79)

The OSC contrast is independent of the overall reflectivity of the sample (within
the limits imposed by the instrumental dynamical range!) and thus a purely polari-
metric characterization technique (the tissue reflectance (/;; +1,) can be studied
independently). Moreover, for isotropic pure depolarizers, as may be true for many
biological tissues, OSC directly provides the elements m,, = mj3; of the sample-
normalized Mueller matrix, which define the tissue depolarizing power for linearly
polarized light. Of course, OSC can also be implemented with co- or counter-oriented
circular polarizations, and then it provides myy.

An OSC imager thus comprises a linearly polarized source, and a PSA able to
provide images with two linear orthogonal polarizations as efficiently as possible.
Three schemes of such PSAs have been described in the literature and are outlined
in Figure 7.11. In the first scheme (left panel), the acquisition of the two polarized
images is realized sequentially, by “optically rotating” the linear polarizer by means
of a liquid crystal cell with constant half wave retardation whose orientation can be
switched between two azimuths 45° apart from each other in less than 1 ms. With
so fast a polarization modulation, the time needed to take both polarized images is
determined solely by the CCD speed and the integration time necessary to reach a
good SNR. Such a device has been used on a colposcope for in vivo examination
of uterine cervix at 10 fps for the OSC images [58]. In the second scheme (center
panel), the two polarizations are separated by means of a Wollaston prism and two
images are formed simultaneously on the CCD sensor (S) in the focal plane of the
lens (L) [59]. The third scheme (right panel) makes use of a polarizing beam splitter
(PBS) and two separate cameras to take the polarized images. In the last scheme,
the polarized images are taken simultaneously at video rates, but there may be issues
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FIGURE 7.12 Highly sensitive complete Mueller point-sensing polarimeter. The PSG com-
prises a linear polarizer and a removable quarter-wave plate (QWP) while the PEM-based PSA
is of the type described above. f, and f, are the chopper and PEM modulation frequencies,
respectively. y is the detection angle. Adapted from References 61 and 62.

with misregistration, that is, unavoidable shifts in the pixel-to-pixel correspondence
of identical points in the optical images.

7.3.3.2 A nonimaging Mueller Polarimeter A complete point-sensing polarime-
ter combining a PSG with a polarizer and a removable QWP and a PSA based with
a photoelastic modulator as described above is shown in Figure 7.12.

To boost the SNR as much as possible in this arrangement, the illuminating laser
is chopped (at the sub kHz range, f_.) to allow synchronous detection of the “DC”
component, in addition to that of the signals modulated by the PEM at w (50 kHz, f;,)
and 2w (100 kHz).

7.3.3.3 Complete Mueller Imagers In both examples shown below, the polari-
metric images are taken with a CCD. Of course imaging can also be achieved by
using a single detector and a spatially scanning laser beam.

Dual rotating retarders. In these instruments, the PSG and the PSA both com-
prise a linear polarizer and a rotating retarder. An example of such an instrument is
shown in Figure 7.13. As mentioned above, in such setups the rotatable retarders are
sequentially set at discrete azimuths and are kept fixed for each raw image acquisition
by the CCD. As acquisition of full Mueller images can take tens of seconds these
instruments are well suited to the characterization of static samples.

Pairs of variable retarders. The instrument shown in Figure 7.14 is the Mueller
imager developed at Ecole Polytechnique, for examination of ex-vivo tissue samples.
Both the PSG and the PSA are of the type outlined in Figure 7.10 with nematic liquid
crystals as non-rotating variable retarders.
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FIGURE 7.13 Mueller imager with PSG and PSA, each comprising of a polarizer and a
rotating retarder set sequentially at discrete azimuths for image acquisition by the CCD. From
Reference 63.
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FIGURE 7.14 Mueller imager for examination of ex-vivo samples. The PSG and PSA are
both made of a linear polarizer and two VR making use nematic liquid crystals at fixed
orientations. The retardations of each of the four VRs are switched discretely between pairs
of different values to generate the 16 polarization basis states. The illumination system is
designed to ensure that the polarizations defined by the PSG are uniform over the entire
5 x 5 cm? field of view. Adapted from Reference 64.
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Nematic liquid crystals feature very wide angular acceptance, no image motion
when retardance is changed, and a time response typically less than 100 ms. Full
Mueller images are then acquired in a few seconds by sequentially switching the
retardations of each of the four VRs between pairs of suitably chosen values and
leaving these retardations constant during the CCD integration time. By using a white
light source (halogen lamp) and interference filters, the wavelength can be selected
at will throughout the visible spectrum to enable spectral polarimetry studies.

7.3.4 Summary

In this section, we briefly reviewed the basic principles of design and optimization of
polarimetric instrumentation, and outlined the most widely used practical implemen-
tations. These may take a variety of forms, depending on the selected optical systems
(imaging or non-imaging) and the way the polarization is encoded and detected (in
discrete states, or in Fourier components of periodically varying systems such as
photoelastic modulators). The availability of so many possibilities is very valuable
in practice, as it allows one to “tailor” the polarimetric system for the specific needs
of the envisioned application. In particular, polarization modulation and detection
may be “added” to virtually any optical system, at the microscopic as well as macro-
scopic levels; note that this is not the case for many other techniques widely used in
biomedicine, such as confocal imaging or OCT, which operate only at microscopic
scales. Last but not least, often polarimetry may be implemented at very reasonable
cost, an essential point for many possible practical applications.

74 FORWARD MODELING AND TESTING IN PHANTOMS

7.4.1 Forward Modeling of Polarized Light Propagation in Tissue

7.4.1.1 Overview As outlined in the introduction, tissue polarimetry research has
two major application directions:

(a) Polarized light tissue imaging, wherein polarization can be used as a gating
mechanism to filter out multiply scattered (image blurring) photons in order
to enhance contrast and to improve imaging resolution; and

(b) Tissue characterization/diagnosis, wherein the rich abundance of important
biophysical information contained in the intrinsic tissue polarimetry charac-
teristics (retardance, diattenuation, and depolarization encoded in the tissue
Mueller matrix) are extracted and quantified.

For either, accurate modeling of interaction of polarized light with biological
turbid media or tissue is extremely useful. The insight gained from such forward
models helps in designing and optimizing experiments, and analyzing/interpreting
measured data for specific applications.
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Driven by the two different classes of applications, forward modeling of polar-
ized light transport in tissue also has takes different routes. For the tissue imaging
applications, the major emphasis has been on modeling depolarization of multiply
scattered light in turbid media. In these analytical/heuristic approaches, the tissue is
typically modeled as a turbid medium having bulk-average scattering and absorption
properties, where propagation leads to depolarization as a result of strong multi-
ple scattering events (birefringence and other simultaneously occurring polarization
effects are often ignored) [1, 65—69]. The main aim of these models has been to under-
stand the overall depolarization trends, its dependence on the scattering properties
of the media (density, size, shape, and refractive index of the scatterers), and on the
incident state of polarization, and to design/optimize general polarization schemes
to discriminate against multiply scattered photons for tissue imaging in “simple”
geometries.

Applications involving extraction/quantification of the intrinsic tissue polarime-
try characteristics for tissue characterization and assessment, on the other hand,
require more accurate and complete forward models incorporating the simultane-
ously exhibited complex tissue polarimetry and scattering events [3]. Nevertheless,
for either of the aforementioned approaches, rigorous electromagnetic (EM) theory
based models for analyzing polarized light propagation in tissue has not been fea-
sible. This is because the Maxwell’s equations-based EM theoretical approach will
need to identify and incorporate the spatial/temporal distribution of complex tissue
dielectric structures (different cells and subcellular structures, connective stromal
tissues/extracellular matrix, blood and lymphatic networks, interstitial fluids, etc.),
which is clearly a formidable (if not impossible) task.

Instead, light propagation through such media is often modeled using the radiative
transport theory [70]. Although the scalar radiative transport theory and its simplified
approximation, the diffusion equation, have been successfully used in tissue optics
(specifically to yield light intensity distribution in tissue volume and measurable quan-
tities such as diffuse reflectance, transmittance, spatially resolved diffuse reflectance
and so on), both are intensity-based techniques, and hence typically neglect polar-
ization [1, 70]. Alternatively, the vector radiative transfer equation (VRTE), which
includes polarization information by describing transport of the Stokes vectors of light
(photon packet) through a random medium, has been explored for tissue polarimetry
modeling [1]. However, solving the VRTE in real systems is rather complex and
the solutions are often too slow and insufficiently flexible to handle the necessary
boundary conditions for arbitrary geometries, heterogeneities, and optical properties
as desirable in case of tissue.

The polarization sensitive Monte Carlo (PSMC) technique is a more general
and robust approach that overcomes these limitations [70, 71]. The PSMC tech-
nique has thus been widely explored for tissue forward modeling, specifically for
applications involving tissue characterization/diagnosis as described in greater detail
subsequently. For polarized light imaging applications, relatively simpler analyti-
cal/heuristic approaches based on photon diffusion formalisms [68], random walk
models [69], and maximum entropy principles [65] have proven moderately suc-
cessful. In the following, we provide a very brief account of some of these simpler
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analytical approximations developed to deal with depolarization of multiply scat-
tered light in turbid medium. Interested readers are referred to References 1, 65-69
for further details.

7.4.1.2 Modeling Depolarization of Multiply Scattered Light: Photon Diffusion
Formalism As noted, these simpler analytical theories are aimed at deriving rela-
tionships between various quantities of practical interest such as the DOP (either
linear or circular) of forward-scattered or back-scattered light from a turbid medium,
average path lengths, the optical transport parameters of the medium, and so forth.
As in the case of radiative transport theory, in these models also, the turbid medium
is considered to have bulk-average scattering and absorption properties, representa-
tive of isotropic tissue volumes. The turbid medium is usually modeled through the
optical transport parameters, namely, the absorption coefficient (u,), single scatter-
ing coefficient (uy), and single scattering anisotropy (g) [70]. As is known from the
transport theory, the linear isotropic optical coefficients are defined so that

l=wu' and  Ij=u' (7.80)

give the absorption and scattering mean free paths, respectively.

The anisotropy parameter g is defined as the average cosine of scattering angle.
The value of g ranges from —1 to +1, where g = —1 corresponds to fully backward
scattering, g = 0 corresponds to forward-backward symmetric scattering (isotropic
scattering being a special case) and g = +1 corresponds to fully forward scattering.
In general, the value of g depends on the average size of the scatterers in the medium
relative to the wavelength of the irradiation. For a medium composed of scatterers
whose size is much smaller than the wavelength (radius a < 1), the anisotropy
parameter g is ~0, its value approaching unity (g ~ 1) for media composed of larger
sized scatterers (a > A). The latter regime applies to most biological tissues in the
visible/near-infrared spectral range (g ~ 0.7-0.95) [70].

Another couple of parameters frequently used in tissue optics are

ul = pg1—g)and I* = (ul) - 1 (7.81)

namely, the reduced scattering coefficient and the transport mean free path. Because
of typical tissue g-values, 1 — g is a small number, and thus g, > u,/ and * > [.
The use of 4’ assumes that the reflection and transmission for a slab of tissue with
optical parameters y,, iy, and g are the same as those for the same slab with optical
parameters ,, ys/ ,and g = 0 [70]. This so-called similarity principle is not exact and
holds if the light distribution is studied far enough away from the light source and
boundaries, typically at a distance greater than /*, which in turn is referred to as the
typical length scale over which the propagation direction of photons gets randomized
in a multiply scattering medium.

In the photon diffusion formalisms, the depolarization of multiply scattered light
is usually modeled by assuming an exponential decay of the single path (photon
undergoing successive scattering events) DOP with increasing number of scattering
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events (n). Analytical expressions for depolarization via the characteristic depolar-
ization length scales & and &¢ (for linear and circular polarizations, respectively)
has also been derived based on the so-called maximum entropy principle [1, 65]. The
degree of residual polarization of multiply scattered light at a chosen detection point
can be obtained by averaging (or weighing) the single path DOP over the path length
distribution function.

Approximate analytical expressions for the path length distribution function are
conveniently obtained from the solution of photon diffusion equation for a given
detection geometry [1, 70]. The resulting DOP DOP|  of diffusely transmitted
or reflected light from a turbid medium for two practical geometries, the forward
scattering and the backscattering geometries, has accordingly been derived for linear
and circular polarizations:

e Forward scattering geometry, slab of thickness L

l
DOPp ¢ = 2[é sinh [g:c] exp [—L] (7.82a)
s ,

where [ is the scattering mean free path defined in Eq. (7.80), and

fLe= [%lst,c]% ) (7.82b)

where & - is the characteristic depolarization length scales for linear and circu-
lar polarizations. These lengths are defined as the average distances a (linearly
or circularly) polarized photon has to go through in the medium to see its DOP
decrease by a factor of e. The ratios & /I, and &q /I, thus define the average
number of collisions required to reduce the DOP by a factor of e.

* Back-scattering geometry, semi-infinite medium, L —

DOP ¢ = %eXp l—y‘/ ;Llc \ , (7.83)

where [*(= [/(1 — g)) is the transport mean free path of Eq. (7.81) and y is the
correlation decay parameter with value ranging between 1.5 and 3 [1].

‘We emphasize that the expressions for residual DOP in Eqgs. (7.82) and (7.83) are
valid in the photon diffusion limit, that is, after many scattering events. Moreover,
these expressions typically neglect absorption, which can also be incorporated. In
backscattering geometry, Eq. (7.83) is then modified to [1]:

[30+(1 +
DOP; & %exp l—y { % - 31*;43}] (7.84)
L.C
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Equations (7.82) to (7.84) essentially capture all the qualitative features of depo-
larization of light by multiple scattering (implicit is the assumption that the other
polarimetry effects such as birefringence and diattenuation are absent). This is illus-
trated in Figure 7.13, where the computed variations of characteristic length scales
of depolarization (normalized by the scattering mean free path ) & /I, and &/
are shown as a function of the anisotropy parameter g of the medium. The inset
shows the variations of & /I, and & /I as a function of the size parameter of the
scatterers

2ran,,
X= T (7.85)

where a is the scatterer radius, n, the surrounding medium refractive index, and A
the wavelength. The observed qualitative trends can be summarized as follows:

(a) For isotropic scattering media composed of Rayleigh scatterers (g ~ 0,
a < 1), depolarization of circularly polarized light is stronger than linearly
polarized light (§ >&c).

(b) The reverse is true if (§; <&c), for anisotropic scattering media consisting of
larger scatterers (g > 0.7, a > A, the so-called Mie regime).

(c) The values of & /I, and &q/I increase monotonously (depolarization
decreases) with increasing anisotropy g. When the same quantities are plotted
as functions of the size parameter X, their variation is no longer monotonous,
as they decrease for X > 10 (inset of Figure 7.15). This behavior is actually
due to a decrease in g with increasing X in this range, an effect attributed to
Mie resonances.

The underlying mechanism for depolarization dependence of linearly and circu-
larly polarized light on the size of scatterers is worth a brief mention here. The
decrease of depolarization with increasing g is easily understood as a decrease of
the polarization randomization when scattering becomes more and more peaked in
the forward direction.

The difference in relative rates of depolarization of linearly and circularly polar-
ized light can be attributed to the different mechanisms of depolarization of the two.
The depolarization of incident linearly polarized light occurs primarily due to the
randomization of the direction of the incident field vector as a result of multiple scat-
tering [65,66]. On the other hand, depolarization of circularly polarized light occurs
both due to the randomization of the field vector’s direction and randomization of
helicity [66]. Note that scattering at large angles flips the helicity of the circular
polarization state resulting in its larger depolarization. In a turbid medium, light
travels along many possible zig-zag paths, having contributions from scattering at
various angles. For Rayleigh scatterers (where forward and backward scattering are
approximately equally likely), the contribution of the large angle scattered photons
is greater as compared to the larger sized Mie scatterers (where forward scatter-
ing predominates), ensuing stronger randomization of helicity and thus resulting in
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FIGURE 7.15 The theoretically computed variations of characteristic length scales of depo-
larization (normalized by scattering mean free path /) of incident linearly (&, /1) and circularly
(&-/1,) polarized light as a function of anisotropy parameter g. The inset shows the correspond-
ing variation as a function of size parameter of scatterer X. The calculations were made for
surrounding medium and scatterer refractive indices, respectively, equal to 1.33 and 1.59; and
A =10.6328 um). Adapted from Reference 65.

stronger depolarization of circularly polarized light in Rayleigh media. As the scat-
terer size increases, the additional cause of depolarization of circularly polarized
light, that is, the flipping of helicity due to back scattering also gets reduced, result-
ing in weaker depolarization of circularly polarized light for anisotropic scattering
samples [66,67].

Note that the depolarization of light in a turbid medium is additionally influenced
by the refractive index of the scatterers present in the medium. In fact, it has been
shown that despite having large value of anisotropy parameter g, the depolarization
characteristics of weakly fluctuating random medium (low value of the relative refrac-
tive index contrast m = ng /ny, ~ < 1.05) can be similar to that of media composed
of Rayleigh scatterers [61, 66]. This intriguing behavior originates from the fact that
the anisotropic scatterers (g > 0.7, X > 2) having a lower value of relative refractive
index m (m < 1.05) seem to belong in the weak scattering or Rayleigh-Gans regime,
where each volume element within the scatterer gives electrical dipole scattering in
an independent manner [72], yielding Rayleigh-like scattering matrix elements. The
retention of this dipolar nature of scattering thus leads to depolarization characteris-
tics of such low refractive index, anisotropic scattering medium (such as majority of
biological tissues) much similar to that of Rayleigh scatterers.

These depolarization trends have been verified experimentally in turbid media
composed of spherical scatterers having varying sizes [72-75]. One should,
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however, exercise caution in generalizing these depolarization trends to arbitrary
detection geometries, as depolarization metrics may exhibit more complex behav-
iors. Moreover, these analytical approaches, while useful, are approximate by their
very nature and are accordingly restricted to the “tissue imaging” applications
(employing polarization gating methods and various other co/cross polarization
detection schemes). In contrast, for applications involving extraction/quantification
of the intrinsic tissue polarimetry characteristics for tissue characterization, more
encompassing approach such as the polarization-sensitive Monte-Carlo modeling are
required.

7.4.1.3 Robust Polarization-Sensitive Monte-Carlo (PSMC) Approach for Mod-
eling Complex Tissue Polarimetry Characteristics In this statistical approach to
radiative transfer, the multiple scattering trajectories of individual photons are deter-
mined using a random number generator to predict the probability of each scattering
event. It is also assumed that scattering events occur independently and exhibit no
coherence effects. The position and propagation direction of each photon are ini-
tialized and modified as the photon propagates through the scattering medium. The
photon propagates in the sample between scattering events a distance £ sampled from
the probability distribution [70, 71]:

P(£)d¢ = L expl—p, £1d¢, (7.86)

Hy

where the extinction coefficient u, describes the cumulative effect of scattering and
absorption in the decay of the propagating light beam:

He = Ug =+ Hy. (787)

In conventional intensity-based MC models, when the photon encounters a scatter-
ing event, a scattering plane and angle are statistically sampled based on the so-called
scattering phase function. Various types of scattering phase function has been used
in MC tissue models, namely, the Mie theory-computed phase function or analytical
approximations like the Henyey—Greenstein function [1].

In the polarization-sensitive Monte Carlo (PSMC) model, the photon’s polariza-
tion, with respect to a set of arbitrary orthonormal axes defining its reference frame,
is represented as a Stokes vector S and polarization effects are applied using medium
Mueller matrices M, as illustrated in Figure 7.16. Upon encountering a scattering
event, a scattering plane and angle are statistically sampled based on the polarization
state of the photon (Stokes vector) and the full scattering Mueller matrix M (note
that the angular variation of the m; element of the scattering Mueller matrix is
actually the scattering phase function for unpolarized light). The photon’s reference
frame is first expressed in the scattering plane and then transformed to the labora-
tory (experimentally observable) frame through multiplication of appropriate rotation
matrices (reference frame manipulation) and by the Mueller matrix corresponding to
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FIGURE 7.16 Transformation of the polarization state by an individual scattering event.
The Stokes vector S, describing the incident polarization is expressed in the reference frame
(e‘;, eg, e(z’)deﬁned from the previous scattering event. Then the azimuth ¢ and the polar angle
6 of the scattered photon are sampled statistically from the phase function. The Stokes vector
i describing the incident polarization is expressed as S; in the (ei,ei ,ei)frame obtained by
rotating the initial frame by an angle ¢ in the (x,y) plane. Then the output Stokes vector
S. obtained from the previous one by applying the scattering Mueller matrix M(#), on S, is
expressed in the (e}, e}, e})frame obtained by rotating the intermediate frame in the scattering
plane by an angle 6 around e, = e;.

the scattering event. Usually, the scattering Mueller matrix M is computed using Mie
theory, which assumes the scattering medium to be composed of discrete spherical
scatterers [76,77]. In principle, incorporation of scattering Mueller matrices for other
non-spherical scatterers or the scattering matrices for other continuously fluctuating
medium (such as tissue) is also possible [78].

The evolution of polarization state of each photon packet is tracked (via the
Stokes vectors) following successive scattering events. The absorption effects are
incorporated after successive scattering events by multiplying the photon by a factor
that decreases its weight

o=t (7.88)
Ha + Uy
also called albedo, as conventionally done in intensity-based MC models [70].
Upon encountering an interface (either an internal one, representing tissue layers
of different optical properties, or an external one, representing external boundary), the
probability of either reflection or transmission is calculated using Fresnel coefficients.
Assuming no interference effects, the final Stokes vectors for light exiting the sample
in a particular direction (at any user selected detection point) are computed as the
sum of all the appropriate sub-populations of photons. The sample Mueller matrix
(for a given detection geometry) can then be calculated by sequentially changing
the input polarization between four (or more) states, by recording the corresponding
output Stokes vectors for each respective input states, and performing algebraic
manipulations [76].
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While the effects of scattering on the polarization evolution with successive scat-
tering events can be modeled by the scattering Mueller matrix M, the effects of
other medium polarimetry effects such as linear birefringence and optical activity
can also be incorporated by including their corresponding Mueller matrices. How-
ever, difficulty arises in modeling many simultaneous polarization events in the
presence of multiple scattering. Matrix multiplication is generally not commutative
(MpMg # MM, ); thus, different orders in which these are applied will yield dif-
ferent effects (cf decomposition discussion of Section 7.2.3). Yet in actual tissues,
these effects (such as optical activity due to chiral molecules and linear birefringence
due to anisotropic tissue structures) are exhibited simultaneously and not one after
the other as sequential multiplication implies. Thus, a realistic tissue model must
include these simultaneous polarization effects in the presence of scattering.

This problem is tackled through the use of the so-called N-matrix formalism
[7, 79], which combines several polarization effects into a single matrix describing
them simultaneously. Briefly, in this formalism, the matrix of the sample is represented
as exponential sum of differential matrices (N-matrices), wherein each matrix includes
a single polarization effect [7, 79]. The issue of ordering of noncommutative matrices
is overcome as matrix addition is always commutative. The differential matrices
corresponding to each optical property exhibited by the sample are then summed
to express the combined effect, and are subsequently applied to the photons as
they propagate between scattering events. Note that an analogous differential matrix
formalism for combining simultaneous polarimetry effects has been discussed in
Section 7.2.3.3, in context to inverse polarimetry analysis. Finally, the scattering
histories of a large number of photon packets (typically 10’—10° photons are required
to generate statistically acceptable results) are tracked as they propagate through the
medium and are summed to yield the macroscopic parameters of practical interest
(Stokes vectors, Mueller matrices, path length distributions, polarization statistics
from different scattering histories, etc.).

In the simulation, circular and linear birefringence (these are the two relevant
tissue polarimetry effects in addition to depolarization) are modeled through the
optical activity y in degrees per centimeter, and through the anisotropy in refractive
indices (An), respectively [76]. Here, An = (n, — n,) is the difference in refractive
index along the extraordinary axis (n,) and the ordinary axis (n,). For simplicity, it
is generally assumed that the direction of the extraordinary axis and the value for
An is constant throughout the scattering medium (although recent research efforts
are exploring the effects of multiple uniaxial domains of varying magnitude and
orientation of birefringence [4; 80]. In each simulation, n, and n, are taken as input
parameters and a specific direction of the extraordinary axis is chosen. As each photon
propagates between scattering events, the difference in refractive indices seen by the
photon depends on the propagation direction with respect to the extraordinary axis.
The effect is usually modeled using standard formulae describing the angular varia-
tion of refractive index in uniaxial medium. Similar to conventional MC model, the
scattering and absorption properties are modeled using the optical transport param-
eters (scattering coefficient ug and absorption coefficient y, and single scattering
anisotropy g).
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7.4.2 Experimental Testing and Validation in Tissue Phantoms

7.4.2.1 Forward Model The polarization sensitive Monte Carlo forward model,
described above and the Mueller matrix inverse analysis methods, described in Section
7.2.4, requires comprehensive validation prior to their implementation for polarized
light assessment of complex systems like tissues. The validity of these approaches
has thus been tested on various tissue simulating phantoms exhibiting scattering and
polarization properties, which are known and user-controlled a priori [61, 62, 81].
The validation studies have been performed on optical phantoms exhibiting either
sequential or simultaneous polarization effects in presence of multiple scattering
[45]. Note that in complex systems like tissues, no unique order (or sequence) can
be assigned to the polarimetry effects; rather, these are exhibited simultaneously
(except a few specific type of layered tissues, wherein sequential occurrence of some
polarimetric effects may indeed happen). We shall thus present selected validation
results on tissue phantoms exhibiting simultaneous scattering and polarization effects
[3, 61, 62].

These solid phantoms were developed using polyacrylamide as a base medium,
with sucrose-induced optical activity, polystyrene microspheres-induced scattering,
and mechanical stretching to cause linear birefringence (or linear retardance). To
apply controllable strain to produce linear birefringence, one end of the polyacry-
lamide phantoms was clamped to a mount and the other end to a linear transla-
tional stage, inducing varying linear birefringence with its axis along the direction of
strain. These phantom systems mimic the complexity of biological tissues, exhibit-
ing simultaneous effects of linear birefringence, optical activity, and depolarization
due to multiple scattering. The experimentally recorded Mueller matrix from a bire-
fringent, chiral, turbid phantom measured in the transmission geometry is shown in
Figure 7.17a. The corresponding matrix generated through the PSMC model, using
the same input optical parameters is shown in Figure 7.17b.

(a) (b)
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FIGURE 7.17 (a) The experimentally recorded Mueller matrix in the forward (transmission)
detection geometry from a birefringent (extension = 4 mm, corresponding to a value of linear
retardance 6 = 1.345 rad for 1 cm path length), chiral (concentration of sucrose =1 M, y =1.96°
cm™!) turbid (4, = 30 cm™!, g = 0.95) phantom of thickness of 1 cm. (b) The corresponding
Mueller matrix generated through the PSMC model with input parameters: linear birefringence
An = 1.36 X107 (corresponding to § = 1.345 rad), y = 1.96° cm™!, y, =30 cm™!, g = 0.95.
Adapted from Reference 3. (For a color version of this figure, see the color plate section.)
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The simultaneous occurrence of the constituent medium polarization properties
(depolarization, linear birefringence, and optical activity) are observed to contribute
in a complex interrelated way to the Mueller matrix elements (both the experimental
and the MC-simulated one), resulting in essentially all sixteen nonzero elements.
Even though a direct quantification of the individual polarimetric contributions from
such “lumped” system Mueller matrix is not possible, some qualitative features of
the constituent polarimetry effects may readily be identified from the Mueller matrix
elements:

1. In both the experimental and the MC-generated Mueller matrices, the sig-
nature of linear birefringence is reflected as considerable magnitudes of the
ms, and my; elements (representing horizontal/vertical linear birefringence),
as one would expect for a linear retarder with orientation angle 6 = 90°. This
is however, accompanied with nonzero magnitudes of m,, and m,, elements,
which is a manifestation of the random orientation effects of linear birefrin-
gence (as experienced by different subpopulation of multiply scattered photons
undergoing zig-zag paths in the medium).

2. Chirality (optical rotation) is manifested as a difference of m,; and mj3, ele-
ments, even though the effect is considerably weaker. The inequality of the
magnitudes of m,3 and ms, elements is a manifestation of interrelated “cross-
talk” contributions from other simultaneous effects.

3. The effect of depolarization is prominently reflected in the diagonal elements
of the Mueller matrix. While the m,, element closely resembles polarization
loss (horizontal/vertical linear depolarization) due to multiple scattering alone
(additionally weakly influenced by optical rotation effects), the my; (+45°
linear depolarization) and m,, (circular depolarization) elements are strongly
influenced by simultaneous linear birefringence effects and are accordingly
considerably lower in magnitude.

4. In absence of any intrinsic diattenuation effects (either in the experimental
phantom or in the simulation), the characteristic elements m,, m3, and m,
do not exhibit appreciable magnitudes.

The excellent agreement between the experimental and the simulated Mueller
matrices emphasizes the capability of the PSMC model in simulating complex tissue
polarimetry effects (simultaneous optical activity and birefringence in the presence
of multiple scattering). Yet the complicated nature of the resultant Mueller matrix
underscores the problems associated with polarimetric data interpretation in such
complex systems. But as illustrated below, despite these complexities, the constituent
polarimetry characteristics can be successfully isolated and quantified using the
Mueller matrix inverse analysis (various decomposition) methods. The theory behind
these was described in Section 7.2.3; we now turn to experimental validation studies
of these approaches.

7.4.2.2 Inverse Polarimetric Analysis Figure 7.18 displays the results of inverse
polarimetry analysis (Mueller matrix decomposition) on the experimental Mueller
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FIGURE 7.18 The experimentally recorded Mueller matrix in the forward detection geom-
etry (top panel, reproduced from Fig. 7.17a). The basis matrices (M,, My, M) obtained
following the forward polar decomposition process (middle panel). The matrix logarithms L,
and L, derived using the logarithmic decomposition (bottom panel). The estimated polariza-
tion parameters using both the polar decomposition and the differential matrix approaches are
listed in Table 7.3. Adapted from Reference 44. (For a color version of this figure, see the
color plate section.)

matrix shown in Figure 7.17a [44]. Since these tissue phantoms exhibit simultaneous
(rather than sequential) polarization effects, use of the forward, reverse, or symmet-
ric product decomposition within the polar decomposition family (which employs
sequential factorization of the elementary polarization effects) is expected to be
somewhat inaccurate. For these three sequential product approaches, representative
results are shown for the forward decomposition only (Figure 7.18, middle); these are
compared with the logarithmic (differential matrix) decomposition which assumes
simultaneous occurrence of the constituent polarimetry effects) (Fig. 7.18, bottom)
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TABLE 7.3 The values for the polarization parameters, A, §, v, and D, extracted
using the logarithmic decomposition from the L matrix.

Control Logarithmic Forward polar
Parameters input decomposition decomposition
A ~0.188 0.211 0.210
&6 (radian) ~1.574 1.386 + 0.022 1.386
Y (radian) ~0.030 0.030 + 0.001 0.030
D ~0 0.030 = 0.009 0.032

The uncertainties in the 8, y, and D parameters are derived from the L, matrix. The values for the parameters
extracted via forward polar decomposition (fourth column). The second column shows the control inputs.
The control input for the net depolarization coefficient A was determined from the experimental Mueller
matrix of the pure depolarizing phantom having no birefringence and optical activity. The expected value
for linear retardance (6) and optical rotation (y) are estimated by using the corresponding values from
the nonscattering phantom (6, = 1.345 rad and y, = 0.026 rad) and accounting for increased path length
(Z)6 =16y (Z),y =y -(Z),(Z) =1.17 cm is the MC-derived average photon path length).

Source: Adapted from Reference 44.

Evidently, the forward polar decomposition-derived basis matrices exhibit simpler
characteristic features of standard sequential and homogeneous depolarization, retar-
dance, and diattenuation matrices with many of the off-diagonal null elements (see
Section 7.2.2), as expected. Similarly, the Lorentz antisymmetric L, and symmetric
L, components of the matrix logarithm derived via the differential matrix formalism
exhibit characteristic features of simultaneous depolarization, linear birefringence,
and optical activity effects (their mean values and uncertainties discussed in Section
7.2.3.3).

The estimated polarization parameters using both the polar decomposition and
the differential matrix formalisms are listed in the accompanying Table 7.3. In the
absence of any intrinsic diattenuation property, the values for D estimated from
both the decomposition formalisms are quite low and comparable (as expected). The
estimated values for the depolarization coefficient A from the two formalisms are
self-consistent and are also in excellent agreement with the controlled input.

Turning to the other two biologically important polarization parameters (linear
retardance 6 and optical rotation y), several interesting trends are seen. The derived
optical rotation y in the presence of turbidity shows small increase as compared to
that from analogous nonscattering phantom (y o ~ 0.026 rad, not shown here), which
arises from the increase in optical path length due to multiple scattering (resulting
in accumulations of y values). In fact, the accumulated value of y matches well the
expected oney = vy - (Z), where (Z) is the Monte Carlo-derived average photon
path length for this specific geometry.

In contrast, although the composition-derived value for linear retardance 6 of
the turbid phantom is larger (6 ~ 1.386 rad) than that for the clear phantom (6, ~
1.345 rad), it is significantly lower than that expected for accumulated photon path
length (1.574). This has been shown to arise due the curved zig-zag propagation
paths for a group of multiply scattered photon population. Since components of such
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curved photon paths are directed along the linear birefringence axis, this leads to a
reduction in the apparent 6 [44, 81].

The uncertainties (standard deviations) in the differential matrix-derived polariza-
tion parameters, A§'°¢"M, Ay1°¢M (derived from the elements of the L, matrix), also
warrant a brief comment. The uncertainty in linear retardance (A8'°2M) arises both
due to strong depolarization present in this turbid phantom and due to the random
orientation effects of linear birefringence (as observed by different sub-population
of photons undergoing zig-zag paths in the medium). Since the latter effect does
not influence the value for optical rotation, the resulting uncertainty Ay is also
considerably lower as compared to A8°¢™_ In general, the standard deviations in
the polarization parameters contain useful information on the randomness of the
medium and are also additionally influenced by the choice of the detection geometry,
as described below.

The representative experimental results from complex tissue-like turbid media pre-
sented above (and continuing validation studies on several other phantoms exhibiting
varying birefringence, optical activity, and depolarization effects) demonstrate that the
intrinsic polarization parameters of such medium can be self-consistently extracted
using either the logarithmic decomposition or the polar decomposition approach.
One should note, however, that the illustrative results discussed above are based
on Mueller matrices recorded in the forward detection geometry but the extension
of this approach to backward detection geometry (which is well-suited for in-situ
measurements) is warranted and has also been validated [82].

While the latter geometry is important for conceptual and practical reasons, it
offers additional technical hurdles; notably, the polarization parameters associated
with the intrinsic polarimetric properties of the sample in question can be difficult to
infer since they are more strongly coupled with the scattering-induced artifacts. In
fact, it has been shown that the scattering-induced artifacts gets considerably reduced
for detection positions located at distances larger than a transport length away from
the point of illumination (» > I*). Thus, one possible method to measure polarization
parameters from a turbid medium using backward detection geometry is to perform
measurements at a distance larger than a transport length /* away from the point of
illumination [82].

It must, however, be noted that in the backscattering geometry, the reduction
in apparent linear retardance 6 due to the effect of the curved-propagation path is
more prominent as compared to forward scattering geometry [44, 82]. Moreover, the
apparent optical rotation ¥ in this geometry also gets considerably reduced due to the
contribution of optical rotation of different handedness from two distinct subgroups of
photons; while photons undergoing a series of forward scattering events to eventually
emerge in the backward direction result in accumulated ¥ value, subgroups of pho-
tons that suffer scattering in the backward hemisphere only (backscattered photons)
changes the handedness of rotation, leading to cancellation of net optical rotation
[82]. For analogous reasons, the uncertainties in the differential matrix-derived linear
retardance and optical rotation parameters (A8'°¢™, Ay'°2"M) are also considerably
larger in the backward detection geometry as compared to forward detection geometry
[44].
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Note that the phantoms described above do not exhibit any intrinsic diattenuation
effect. Even though the magnitude of intrinsic diattenuation (dichroism) is typically
very weak in most tissues, the effect of nonzero diattenuation effect is also worth
a mention. As discussed in Section 7.2.3, in context to the forward and reverse
polar decompositions, presence of layered tissue structures (interfaces) may yield
significant diattenuation value, due to the different polarization response of the Fresnel
reflection/transmission coefficients. For such tissues (e.g., skin), the diattenuation
effect may not exhibit in a distributed manner (unlike depolarization or birefringence,
which are typically exhibited from the bulk of tissue), rather may be exhibited in a
sequential fashion. Since in the framework of the logarithmic decomposition (or in
the differential matrix formalism), all the elementary polarization and depolarization
properties of the medium are represented simultaneously, use of the logarithmic
decomposition in such situation may lead to deviations in the extracted polarization
parameters from those using polar decomposition. Moreover, in such case, either of
the forward or the reverse decomposition may turn out to be advantageous depending
upon the actual sequence of occurrence of the constituent polarization properties (as
demonstrated with illustrative example in Fig. 7.6).

For most of the tissues exhibiting volumetrically distributed scattering and polar-
ization effects, on the other hand, the logarithmic decomposition is expected to be
more suitable. Thus, one must exercise caution in applying the different decompo-
sition processes for tissue polarimetry characterization, a judicial choice of which
(based on the experimental detection geometry and a priori estimate of the tissue
morphology) may lead to realistic estimation of the intrinsic tissue polarization char-
acteristics.

7.4.3 Summary

This part was devoted to the theoretical modeling of the propagation of polarized light
in tissues. We first summarized the well-established methods for forward modeling,
that is, the determination of the polarimetric response of well-known samples. Once
adequate methods are available for forward modeling, the main issue to be addressed
in practice is the inverse problem, that is, the interpretation of measured polarimetric
responses of unknown samples.

As the main characteristic of biological tissues is predominantly their depolar-
izing power, which is related to multiple scattering, in first approximations most
tissues can be modeled as suspensions of spherical scatterers in optically isotropic
media. In such systems light propagation in multiple scattering regime may be conve-
niently described by the photon diffusion formalism, which provides simple analytical
approximations for the DOP of the emerging light as function of the absorption and
scattering coefficients p, and p, and the scattering anisotropy g, which, in turn,
depend on the size and the index of the scatterers. Virtually all tissues exhibit larger
depolarization for circular than linear incident polarization, as expected for scatterers
much smaller than the light wavelength (Rayleigh regime) or with low index contrast
(Rayleigh Gans regime). Beyond simple analytical approximations, the polarimet-
ric response of suspensions of scatterers can be evaluated by Monte Carlo (MC)
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simulations, provided the scatterers are not too closely packed, so that the light
propagation in such suspensions can be considered as a sequence of “isolated” scat-
tering events. MC method requires extensive computations, but it can fully take into
account the actual geometry of the experiment, overall yielding accurate results. This
accuracy has been experimentally tested on tissue phantoms exhibiting very com-
plex polarimetric responses, including linear and circular birefringences as well as
depolarization due to scattering.

These phantoms were also used to tackle the problem of inverse polarimetric
analysis, by using the decomposition procedures outlined in Section 7.2.3. The loga-
rithmic decomposition is expected to be the most accurate, as in the studied phantoms
all polarimetric effects occur simultaneously and not sequentially, as assumed in the
“three factor” forward and reverse polar decompositions. However, polar (forward)
decomposition provides surprisingly good results, a finding which is yet to be fully
understood. The logarithmic decomposition also allows to quantify the effect of
increased photon path length in the evaluation of the phantom birefringence. More-
over, these phantom studies provide a good grasp of the dependence of the sample
polarimetric response on the measurement geometry, which can act as a potentially
misleading “artifact” if not properly taken into account.

In summary, the theoretical “toolbox” for the interpretation of polarimetric mea-
surements, while not absolutely complete, seems sufficient for most practical inves-
tigations as those illustrated in the next part.

7.5 APPLICATIONS

In this section, we present some illustrative examples of selected polarimetry applica-
tions in biomedicine, both for optical imaging and tissue characterization applications.

7.5.1 Polarization-Gated Surface and Subsurface Imaging

Light polarization can be used as a gating mechanism able to separate the pho-
tons which have been deeply scattered in the bulk of the sample from those which
remained close to the surface: the former are generally depolarized while the latter
typically retain a significant part of their initial polarization. As a result, if an image
(or a spectrum) /; is taken on with polarization orthogonal to that of the incident
photons, the contribution of the deeply scattered photons is largely dominant. The
contribution of the depolarized photons is also present in the image Ij; taken with the
same polarization as the incident light. As a result, the images /, and [, = Iy — I
are dominated by the “deep” or “superficial” contributions, respectively [83]. The
penetration depth corresponding to the “superficial” contribution may be as small
as a few mean free paths [84]. Spectral filtering may be added to polarization to
further enhance the discrimination between “surface” and “bulk” contributions [85].
It is thus possible to get valuable information about the surface and bulk properties
the tissue under study by taking only two orthogonally polarized image (or spec-
tra). The use of linear polarizations discussed above can of course be generalized to
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orthogonal circular polarizations as well. Moreover, in order to enhance the polari-
metric response, the polarized image /,,,; can be normalized by the total intensity, to
provide the OSC

In—1,

Iosc = (7.89)

Polarized imaging has been used, among other applications, in dermatology, to
enhance the typically subtle visual contrasts differentiating various types of tissues.
Early skin fibrosis of a thymic nude mice induced by X-ray irradiation was revealed
by polarized imaging and suitable image analysis, while remaining undetectable
by ordinary intensity imaging [85]. A variety of pigmented and nonpigmented skin
abnormalities were studied by means of this technique by Jacques and coworkers [87],
as illustrated in Figure 7.19. Polarized imaging revealed the disruption of the normal
skin structure (collagen organization) due to cancerous lesions such as malignant
basal cell carcinomas, suggesting a promising route to improve the definition of the
excision margins in surgery [88].

The polarization gating schemes described above have also been exploited for
depth selective spectroscopic measurements in tissue, which can improve the diag-
nostic efficacy of the spectroscopic approaches (elastic scattering [89, 90], fluores-
cence [91], and Raman spectroscopy [92]). As noted above, the underlying principle
is similar: the photons which are scattered (or re-emitted) from deeper tissue layers
undergo multiple scattering events and are depolarized to a larger extent. Polariza-
tion gating thus effectively selects photons which have not traveled beyond a few
scattering mean free paths (mpf = /'~ 100 wum in typical tissues).

Polarization-resolved spectroscopic approaches are thus expected to be particu-
larly suitable for early detection of epithelial cancers (where the majority of human
malignancies originate). Several illustrative examples demonstrate this approach.
For instance, the polarization preserving component (from superficial tissue layers)
extracted using polarization gating exhibited a fine structure component that was peri-
odic in wavelength [89]. This was identified as being due to light that is Mie scattered
by surface epithelial cell nuclei. By analyzing the amplitude and frequency of this
signal using Mie theory, the size distribution and the refractive index of the nuclei
was calculated. Since the size (and distribution) and refractive index of epithelial cell
nuclei are valuable parameters for detecting precancerous changes, this technique
holds promise for in sifu and early diagnosis of epithelial cancer [93]. In addition
to the fine structure component, the polarization-gated elastic scattering signal also
showed inverse power law spectral dependence [90]. This was related to the self-
similar (fractal) nature of microscale fluctuations of local refractive index in tissue.
This was modeled using Fractal-Born approximation of light scattering to yield the
fractal micro-optical parameters, namely, the fractal dimension and the fractal upper
scale, which were also related to the pathological status of the examined tissue [90].

Polarization-gated fluorescence spectroscopic measurements have also been
explored for improving diagnostic efficacy of fluorescence-based methods [91, 94].
Specifically, polarization-gated fluorescence measurements have been successfully
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Freckle

FIGURE 7.19 Normal intensity images and OSC images of a pigmented skin lesion (a
freckle, top) and nonpigmented one (malignant basal cell carcinoma, bottom). The normaliza-
tion by the total intensity in the OSC procedure is clearly very efficient in removing the effects
of pigmentation in the polarimetric contrast. Adapted from Reference 87.

exploited to decouple, isolate, and quantify fluorescence contributions from tissue
layers. Note that fluorescence signal from layered epithelial tissues, detected with
conventional measurement technique (and similar to diffuse reflectance studies), is
due to contributions from different endogenous fluorophores (having different quan-
tum yields, lifetimes, and overlapping spectral line shapes) present in the superficial
epithelial layer and the underlying connective tissue (stroma). Depth-resolved fluo-
rescence measurement facilitated by the polarization gating should thus help improve
contrast in the autofluorescence from malignant and normal sites. Similar strategy
on polarization-resolved measurements has also been exploited for depth-resolved
Raman spectroscopic measurements in layered epithelial tissues [92].
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7.5.2 Tissue Assessment with Mueller Polarimetry

The OSC technique outlined above can provide quantitative and useful information
primarily if the sample is a pure (linear and/or circular) depolarizer. In more complex
cases of practical interest, the tissue may exhibit, in addition to depolarization, linear
and possibly circular birefringence. If so, complete polarimetric characterization
likely requires full Mueller matrix polarimetry, typically followed by an analysis
based on the decompositions outlined in Section 7.2.3 and an interpretation of the
polarimetric properties obtained by this procedure.

7.5.2.1 Noninvasive Glucometry Glucose is an optically active (chiral) molecule,
and its structural asymmetry imposes a unique “fingerprint” on polarized light that
interacts with it. For example, the plane of polarization of linearly polarized light
is rotated upon passage through a glucose solution, by an amount proportional to
the light interaction length, its concentration, and its wavelength-dependent rotatory
power (a known quantity). As such, the glucose concentration in clear media can be
easily determined by polarimetric measurements of optical rotation (this is routinely
done, for example in biochemical laboratories and in the food industry). Can a
similar polarized light approach be used in biomedicine, for example to noninvasively
determine blood glucose levels in diabetic patients? If yes, this would represent a
tremendous advance, as noninvasive glucose sensing remains arguably one of the
most pressing unsolved problems in clinical medicine. Numerous approaches have
been and are being actively explored to address this difficult challenge [61, 95].

Unfortunately, the polarimetric approach for biomedical glucometry is also fraught
with difficulties. Unlike its “easy” transparent media counterpart, light propagating in
tissue does not have a unique interaction length which is needed to convert measured
optical rotation to glucose concentration; other dominant and complex tissue effects
such as multiple scattering and inhomogeneous birefringence depolarize the light
and alter its polarization properties (including causing chirality-unrelated apparent
rotation of its linear polarized fraction); the glucose chirality effects are rather weak
(owing to the low physiologic levels of blood glucose, in the range of 3-30 mM,
or ~0.5-5 g L™! of blood, yielding optical rotations in the millidegree range); other
chiral molecules present in tissue mask the already-weak glucose signal, and so on.
Nevertheless, we and others have performed careful fundamental feasibility studies
toward polarimetric tissue glucometry, as briefly summarized below.

Figure 7.20 shows millidegree-level optical rotations y induced by physiological
(millimolar) glucose concentrations in a 1-cm-thick polystyrene microsphere scat-
tering phantom (u; ~ 30 cm~') [61]. This study was performed with a sensitive
polarimetric system that utilized polarization modulation and synchronous detection
similar to Figure 7.12 but with a dual balanced photodetector approach, optimized
to measure weak polarization signals in largely depolarized background. The results
shown are for the forward-direction transmission geometry, with the rotations cal-
culated from the determined Stokes vectors via y = O.Stan‘](u/q). The forward
transmission direction was selected to enable direct results interpretation (path length
> cuvette thickness, rotation directly proportional to glucose concentration) and to
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FIGURE 7.20 Logarithmic plot of experimentally determined optical rotation as a function
of glucose concentration in scattering media (1.4 um diameter polystyrene microspheres in
water, y, ~ 28 cm™!) down to physiological glucose levels. Measurements were performed
using forward detection geometry (y = 0° in Fig. 7.12) through 1 cm of turbid media in a
quartz cuvette. Adapted from Reference 61.

minimize rotation artifacts unrelated to chirality (e.g., scattering-induced apparent
rotation, see Figure 7.21). The drawback of the transmission geometry is severe
depolarization, limiting polarimetric measurements to 2—-3 mm thicknesses of tissue
[61]; this is why the scattering coefficient for this study in 1-cm-thick cuvette was
lowered to ~30% of typical tissue levels (~100 cm™!). Nevertheless, this preliminary
study shows the polarimetric potential for measuring physiological glucose levels in
tissue-like scattering media.

Backward detection geometry in reflection mode is more convenient for practical
tissue applications, yet the chirality-unrelated optical rotation artifacts can be severe
[82]. A method to suppress these artifacts is thus essential, and the Mueller matrix
polar decomposition methodology can be used to advantage here. Figure 7.21 shows
the variations in the scattering-induced apparent rotation and in the chirality-induced
true optical rotation as a function of offset distance from the point of illumination,
in the backscattering direction [3, 82]. As seen, the scattering rotation artifact can be
nearly an order of magnitude larger than the small chirality effect, completely dom-
inating and masking the presence of glucose. The polar decomposition reveals that
the scattering rotation does not arise due to intrinsic chirality of the medium, rather
is due to the scattering-induced linear diattenuation effect (also shown in the figure).
Importantly, polar decomposition can effectively separate out these two differently
sized contributions, revealing the glucose signal in this important yet artifact-prone
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FIGURE 7.21 Optical rotation (y), derived from the decomposition of Monte Carlo-
generated Mueller matrices (open triangles), of backscattered light as a function of distance
from the center of the incident beam impinging on a chiral (y = 0.082° cm™!, corresponding
to 100 mM concentration of glucose) isotropic turbid medium (¢, = 30 cm™!, g = 0.95, thick-
ness = 1 cm). The solid triangles represent the corresponding scattering-induced rotation of
the polarization vector, derived from the Stokes parameters of the scattered light (for incident
polarization state S = (1,0,1,0)T). Also shown (open stars) is the apparent diattenuation which
seems to be responsible for the scattering-induced rotation artifact. The inset shows the back-
ward detection geometry. The chirality-induced rotation approaches zero as the detection angle
approaches the exact backscattering detection (y = 0° cm™!, data not shown). The symbols
represent Monte Carlo and decomposition-derived data points and the lines serve to guide the
eye. Adapted from References 3 and 82.

detection geometry. Despite the highly preliminary nature of this study—the com-
plicating effects of other chiral confounders, experimental validation of these Monte
Carlo simulations results, signal changes due to varying optical absorption, and other
complexities yet to be evaluated—this does suggest a method to tease out small glu-
cose specific signals in highly scattering tissues. In combination with Monte Carlo-
determined path length distributions, we are currently investigating spectroscopic
polarimetry coupled with chemometric regression analysis to isolate glucose rota-
tions from contributions of other chiral confounders [96]. Further, given the extremely
challenging nature of the noninvasive glucometry problem, it is worthwhile to con-
sider hybrid approaches; that is, combining spectral turbid polarimetry with another
diagnostic modality (e.g., spectral diffuse reflectance, Raman, photoacoustics) by
carefully drawing on each technique’s complementary strengths in isolating small
tissue glucose signals.

7.5.2.2 Cancer Diagnosis Smith et al. [63] demonstrated the potential of
full Mueller polarimetric imaging in dermatology by studying various tissue
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abnormalities. Melanomas exhibited reduced depolarization power with respect to
surrounding healthy tissue; as shown in several other studies, this trend seems to be
quite general when comparing healthy and (pre)cancerous tissues. No such effect was
observed on benign lesions, or in lupus lesions, which, however, exhibited slightly
reduced retardance, whose slow and fast axes showed rapid spatial variation across
the lesions.

Polar decomposition of Mueller matrices has also been evaluated for the diagno-
sis of oral precancer [97]. Precancers induced in cheek pouches of hamsters were
imaged in vivo and then analyzed histologically. Again, the precancerous tissues were
characterized by reduced depolarization and retardance with respect to surrounding
healthy tissue.

Ex vivo colon samples have been studied by Pierangelo et al. [98, 99] with multi-
spectral Mueller polarimetry. In contrast with the previous examples, these samples
did not exhibit any significant retardance nor diattenuation. The polarimetric infor-
mation was thus provided mostly by the depolarization power throughout the visible
spectrum (from 500 to 700 nm). Depolarization was found to increase with increas-
ing wavelength from the green to the red part of the spectrum. This general trend is
due to decreasing absorption, which thus increases the average number of scattering
events photons suffer before being detected and results in higher polarization scram-
bling/loss. Moreover, depolarization varied significantly with the degree of tumor
penetration within the colon structure. At the beginning (stage T1), the tumor is
confined to the most internal superficial layers (the mucosa and submucosa). Then at
stage T2, it gets ulcerated (its thickness decreases by eliminating the “top” layers of
cancerous tissue while the tumor attacks the underlying layer (the muscularis)). At
stage T3, the tumor reaches the outermost layer (the serosa or pericolic tissue) and
eventually perforates it (stage T4).

Figure 7.22 shows an example of depolarization images of a colon with a can-
cerous lesion, together with the corresponding histologic pathology analysis. Using
the healthy region (H) at the left of the figure as a reference, the burgeoning part
B (graded histologically as T1) is less depolarizing, in agreement with the previous
examples. However, at inner regions of the lesion (point 2, stage T2), depolarization
increases again, and even more so in the innermost region (stage T3). In the lowest
part of the figure, the sample is “folded,” showing directly pericolic tissue, which
appears to be extremely depolarizing (probably due to its very weak absorption, as
this tissue is essentially fat, with very low hemoglobin concentration). Thus the non-
monotonic behavior of depolarization with the disease progression may be attributed
to the influence of the pericolic tissue, which increases when ulceration progresses,
making the tissue more and more depolarizing after the initial depolarization decrease
observed at the initial burgeoning stage.

In spite of its complicated non-monotonic behavior, the depolarization contrast
might be used as a diagnostic tool to provide a quick tumor staging, a possibility
which would be particularly useful if polarimetric imaging could be implemented
endoscopically.

In addition to tumor detection and staging, polarimetric imaging might also be
useful for the follow-up of radiochemotherapy (RC) of locally advanced cancers [99].
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FIGURE 7.22 (a) Photo of the colon sample, with healthy (H) tissue, burgeoning (B) and
ulcerated (U) cancerous regions. (b) Depolarization image (values given by the color bar from
0 (blue) to 1 (red)) of the same sample. The solid line indicates the depth cut which has
been studied histologically. In this cut, shown in panel, (c), the regions marked 1 (healthy),
2 (burgeoning), 3 and 4 (ulcerated) are seen, together with the staging of the lesions, from T1 to
T3. The different layers are identified by M (mucosa), SM (submucosa), MP (muscularis), and P
(pericolic tissue, or serosa). (S) and (C) designate stromal and cancerous tissues, characterized
by low and high cell densities, respectively. Adapted from Reference 99. (For a color version
of this figure, see the color plate section.)
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We studied three mesorectum samples excised after neoadjuvant radiochemotherapy.
For T3 to T4 lesions, with or without regional metastatic lymph nodes, such neoad-
juvant procedures are known to make surgery easier and to reduce the probability
of relapse [100]. The patients were irradiated with standard doses (~50 Gy) and
operated 6 weeks later. For the three samples, the “footprints” of the initial tumors
exhibited polarimetric contrasts (compared to healthy regions) which could be cor-
related with the degree of cancer regression after RC. Further, tumor depolarization
appeared lower than that of surrounding healthy tissue, even though the residual
tumor volume fraction/cellular tumor compartment was estimated from pathology to
be only a few percent. Such high polarimetric sensitivity suggests that it is not the
tumoral (cellular) tissue itself which is detected, but more probably the difference
in the fibrous collagen structure induced by the presence of cancer cells (as further
discussed below).

Another topic of potentially addressable by tissue polarimetry is the diagnosis of
uterine cervical cancer. This disease, due to infection by Human Papilloma Virus
(HPV), begins with precancerous lesions confined within the epithelium and classi-
fied as CIN1, CIN2 or CIN3 (acronym for Cervical Intraepithelial Neoplasia) when
anomalous cells invade the lowest third, two-thirds, or the entire epithelium thick-
ness. If not treated, CIN3 lesions eventually disrupt the epithelium basal membrane
and evolve into potentially lethal invasive cancer. This evolution is very slow, with
5-10 years typically elapsing from the initial infection to the onset of invasive can-
cer. As with many cancers, the disease can be cured very effectively by surgically
removing the anomalous regions on the cervix. Thus it is of paramount importance
to screen female populations to enable early disease detection, and to localize the
pathological regions as accurately as possible.

In developed countries, the first screening step is the Pap smear, which consists
of a cytologic examination of the cells collected from the cervix. If these cells seem
anomalous (typically exhibit large nuclei), the patient then undergoes a detailed exam-
ination of the cervix by means of a colposope (long working distance microscope)
to localize the CIN lesions, take biopsies and eventually decide a treatment course.
However, colposcopy is a notoriously difficult and operator-dependent examination,
with relatively poor performance [101]. There are thus many surgeries performed
without real necessity, or with incorrect surgical margins relative to the true extend
on the tumor. Conversely, essentially no screening is proposed in developing countries
(systematic Pap smears would require too many pathologists to examine the samples).
Thus this disease kills ~275,000 women worldwide every year, the vast majority of
which could have been saved by a simple and accurate surgery. Clearly then, useful
alternatives to the Pap smear, possibly by simple optical means, are very much needed
to solve this outstanding public health problem [102]. In this respect, a large amount
of work has been performed on fluorescence / reflectance cervical imaging by several
groups, including those led by Richards Kortum, Follen, and MacAuley [102,103]. A
meta-study, carried out by these researcher and others and based on 26 clinical stud-
ies [103], concluded that these methods offered similar performance as colposcopy,
and may thus be used as adjuncts. For resource limited countries, particularly simple
and low-cost techniques, such as VIA (Visual Inspection with Acetic acid, which is
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basically a colposcopic examination with the naked eye or a standard color camera)
have also been evaluated and showed good potential, in spite of rather low sensitivity,
of the order of 30% [104]. To summarize, significant progress is still needed in the
management of cervical cancer, especially in low resource countries.

Polarimetric imaging is also a promising approach in addressing this topic [64].
Several samples have been imaged ex vivo by using the polarimeter shown in Figure
7.13 of Section 7.3.3.3. Typical results, obtained from two samples, are shown in
Figure 7.23. The first sample was healthy, while the second one contained a CIN3
zone and a benign lesion (an ectropion), where a layer of glandular tissue was seen
(this tissue is normally present only in the endocervix). The pathology diagnosis
was established according to the standard procedure: fixing the sample in forma-
lin, cutting it into 4 mm thick blocks, embedding it in paraffin, shaving from the

Healthy H

CIN3|

Gland.

Intensity images 0° 25° 50° 0.4 0.7 1

FIGURE 7.23 Images of two ex vivo cervix samples, one healthy (top) and the other one
with a CIN3 zone and a benign lesion (visible glandular tissue) (bottom). Left column: raw
intensity images. Middle column: images of scalar retardance 4, in color scale from 0° to 50°.
Right column: images of depolarization A, from 0.4 to 1. Retardance and depolarization were
obtained from raw Mueller images by standard Lu-Chipman decomposition procedure of the
experimentally determined Mueller matrix images. On each sample, the solid black line shows
the limit of the intact epithelium. The straight lines indicate the locations of the histological
cuts where the pathology diagnostic was made (white for healthy, purple for CIN3, and orange
for glandular tissue). The dashed black lines designate regions where at least one among the
16 raw intensity images was saturated due to tissue “glare.” The top left image shows an
example of such saturated region, shown in red. Obviously, polarimetric data in these regions
are suspect. Adapted from Reference 64. (For a color version of this figure, see the color plate
section.)



APPLICATIONS 307

resulting “wax blocks” 5-pum-thick slices, deparaffinizing and staining them for
microscopic examination. As a result, pathology diagnosis was established only
along the “lines” shown in the intensity images (left column) of Figure 7.23; they are
repeated in the corresponding polarimetrc images for landmarking and for correlation
with microscopy-derived pathology grades. Viewing the ordinary intensity images
in the left column, basically no difference was observable between the healthy and
CIN3 tissues, while the glandular tissue was more reddish (and thus more absorbing
at the operating wavelength, 550 nm).

The Mueller images were decomposed by the standard Lu-Chipman procedure,
and the resulting scalar retardance and depolarization images are shown. The healthy
sample is characterized by strong retardance almost everywhere, with predominantly
tangential slow axis orientation (not shown). On the pathologic sample, there is a
healthy region in the lower left part of the image, again characterized by a strong
retardance, while both the CIN3 and the ectropion show essentially ~zero retardance.
The depolarization is again very strong everywhere on the healthy sample, while on
the other one it decreases from healthy to CIN3 to glandular regions.

Although these results (described more fully in [64]) must be substantiated with
much more extensive studies, preliminary trends strongly suggest that uterine cervix
tissue exhibits strong birefringence in its healthy regions, with birefringence disap-
pearing at the very earliest stages of the precancerous evolution.

These observations are very promising in the context of an “automated” optical
diagnosis of uterine cervical precancer (thus not requiring the often unavailable exper-
tise of a medical specialist) and are substantiated by the results of other groups. For
example, Shukla and Pradhan [105] have also studied histology of cervical samples
and showed that the connective tissue beneath healthy epithelium exhibits signifi-
cantly larger retardance values than that beneath precancerous epithelium. It is well
known that precancerous evolution of epithelia modifies the structure of neighboring
connective tissues via a decrease in size and concentration of collagen fibers [106].
Such modifications are probably the main reason of the observed disappearance of
the tissue birefringence in abnormal regions of cervical tissues, and might in fact
occur in other sites/clinical scenarios of interest for medical diagnostics.

7.5.2.3 Characterization of Structural Tissue Anisotropy and Applications Sev-
eral studies have addressed tissue structural anisotropy monitoring using polarimetric
techniques [3, 62, 107, 108]; the above discussions of colonic and cervical patholo-
gies are particular examples of this approach in oncology. As mentioned, tissue struc-
tural anisotropy can stem from aligned orientations of tissue fibrillar components,
such as collagen and elastin, actin-myosin fibers, and mineralized hydroxyapatite
crystals [1]. Since such structural alignments often manifest as linear birefringence
effects, quantification of linear birefringence may represent a sensitive metric for
changes in tissue structure. A number of investigations have therefore addressed such
polarization birefringence measurement for the detection of tissue abnormalities like
osteoarthritis, thermal injury and cancer (e.g., basal and squamous cell carcinomas)
[3, 62, 107, 108]. Measurement of complete Mueller matrix and its inverse analy-
sis via the various decomposition approaches (outlined in Section 2.3) are clearly



308 TISSUE POLARIMETRY

advantageous for this purpose because (i) the small birefringence alterations can
be efficiently decoupled and quantified in presence of the other tissue polarimetry
effects; (ii) the decomposition process yields additional tissue polarimetry metrics
(e.g., diattenuation, depolarization, and potentially others not discussed above, such
as retardance ellipticity), which provide useful complementary information thus gen-
erating a more complete picture of the complex biophysical alterations taking place
in tissue. In the following, we offer two other cancer-unrelated illustrative exam-
ples of tissue structural anisotropy characterization with polarized light: bladder wall
abnormalities and regenerative heart treatments.

Bladder is an example of internal organ whose structure and function engenders
anisotropic tissue structure. Its purpose is to store and then expel urine, and its wall
layers extend and then contract to allow this to happen. Microstructural remodeling
in its epithelial layers is known to occur under mechanical distension and during
various disease processes (e.g., bladder outlet obstruction). As a step toward devel-
oping a turbid polarimetry platform for human bladder pathology studies, we have
recently obtained birefringence maps in normal ex-vivo distended rat bladders that
demonstrate the differential response of different bladder regions (dome, ventral, and
dorsal sides) to changes in filling pressure [109]. The results of Figure 7.24 were
obtained under pressures that represent typical physiological ranges in normal rodent
(and human) bladders; as we progress to examine pathological cases, the upper end
of the pressure range will likely have to increase. As seen, the dome region of the
bladder shows maximum birefringence when the bladder is distended to high pres-
sures, whereas the ventral tissues remains roughly isotropic during distension. In
addition, the average anisotropy direction is longitudinal, along the urethra to dome.
Using the analysis in Section 7.2.3.1, we converted the retardance values (derived
from polar decomposition) to birefringence by measuring the bladder wall thickness
with an optical coherence tomography (OCT) system, and by estimating the average
photon path length in this reflection geometry via our polarization-sensitive Monte
Carlo model (Section 7.4.1.3). The derived wall anisotropy trends thus represent an
intrinsic tissue property of its anisotropy/organization independent of thickness, to
better aid in understanding the structure-functions relation in healthy bladders. These
new insights into the wall microstructure anisotropy of ex vivo distending bladders
may also help improve the functionality of the artificially engineered bladder tissues
[110].

Myocardial muscle tissues exhibit high level of linear birefringence in its healthy
state due to the aligned arrangement of cardiomyocytes and collagen fibers [111].
Following a heart attack, the structural anisotropy is expected to reduce due to struc-
tural remodeling, with cardiomyocyte atrophy and an increase in fibrotic collagen
content (scar tissue). Various postinfarct therapies (e.g., stem cell tissue regenera-
tion) aim to restore heart muscle towards its normal structure (by further structural
remodeling), and more importantly restore some of its functional status. Mueller
matrix measurement and its inverse analysis may serve as a sensitive probe the state
of the myocardium after infarction and report on the success of regenerative treat-
ments [111,112]. In order to explore this possibility, Mueller matrices were recorded
in the transmission geometry, from 1-mm-thick ex vivo myocardial samples from
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FIGURE 7.24 Variation of the local birefringence of ex vivo rat bladder tissue with pressure.
The left, middle, and right columns show the retardance images of three different regions
of the organ (dome, dorsal, and ventral surfaces, as shown at the extreme left of the figure)
for distending pressures equal to 1.0, 2.2, and 3.3 kPa, respectively. The field of view is
2 mm in diameter. The images were taken in backscattering geometry, at 25° from the exact
backscattering direction, and processed by the polar decomposition (see Section 7.2.3.1) to
extract the retardance parameters, namely the scalar retardance and the anisotropy orientation,
the latter being shown by arrows. The tissue birefringence, shown in the color bar scale of
An at the extreme right, was calculated from the scalar retardance and the tissue effective
thickness. This thickness was derived from OCT measurements and evaluation of the average
path length of the photon trajectories due to the multiple scattering events by Monte Carlo
simulations. Note the maximum birefringence in the dome region upon maximum distension,
and the overall longitudinal anisotropy orientation (along the urethra-dome axis). Adapted
from Reference 108. (For a color version of this figure, see the color plate section.)

Lewis rats after myocardial infarction, both with and without stem cell treatments.
Measurements were made using both the point measurement and imaging polarime-
try systems. The point measurement system employed polarization modulation and
synchronous lock-in detection (described in Section 7.3.3.2, Fig. 7.12). Imaging
polarimetry employed dc measurements with the PSG-PSA—based approach (also
discussed in Section 7.3) to construct the Mueller matrix. The Mueller matrices mea-
sured by either of these systems were analyzed via polar decomposition to obtain
linear retardance (6) values. The results are summarized in Figure 7.24.
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The observed main features can be summarized as (i) the infarcted region of
the untreated myocardium exhibits a large decrease in the magnitude of 6 (Fig.
7.25b). In contrast, in the infarcted region after stem cell treatment an increase in &
toward the native levels is observed (Fig. 7.25b), indicating regrowth and reorganiza-
tion/remodeling of the myocardium. (ii) The polarimetry images (Fig. 7.25¢) from the
same tissue also show similar retardance trends, although with some variations (due
to difference in measurement geometry and spatial heterogeneity in tissue optics).
The spatial variation of the retardance images (Fig. 7.25¢) not only shows difference
from infarct to normal, but within each region as well (the 6 values are higher in the
middle of the myocardial wall with gradual lower values toward the edges).

This variation through the myocardial wall is attributed to the change in orien-
tation of the myocyte fibers through the wall [112]. Nevertheless, the increase in
6 in the infarcted regions of the stem-cell treated hearts indicates reorganization
and regrowth of the myocardium microstructure caused by therapeutic stem cell
injection, as was subsequently confirmed by histology [112]. Note that other tissue
polarimetry metrics that emerged from the Mueller matrix decomposition analy-
sis, namely, diattenuation and depolarization, also yielded complementary and use-
ful microstructural information (on the orientation/alignment of the myocyte fibers
through the wall and their changes with infarction as well as with stem cell treatment)
[44, 111, 112]. Moreover, a study with nonlinear microscopy (second harmonic gen-
eration, two-photon excited fluorescence) has also validated and complemented the
polarimetry results, and yielded useful information on the underlying causes of the
measured retardance signals, in the context of collagen versus cardiomyocytes com-
ponents and their spatial organization. The details of these results have been published
[44, 111, 112].

Although quantification of tissue structural anisotropy via polarimetry have shown
considerable promise for a variety of applications involving tissue diagnosis and ther-
apy monitoring, several technical and conceptual challenges in quantifying intrinsic
tissue anisotropy still remain to be resolved [113, 114]. These include understanding
the influence of complex three dimensionally oriented birefringent tissue structures,
orientation-varying spatial domains or potentially non-uniaxial (biaxial) birefringent
domains, on the measured Stokes vector or Mueller matrix elements; and devel-
opment of methods to extract geometry-independent metrics of tissue anisotropy
(intrinsic birefringence and its actual orientation). Recent studies have attempted
to address these issues [109, 113-115]. For example, a sphere-cylinder scattering
model has been adopted in polarization sensitive Monte Carlo simulations to forward
model the effect of such complex microstructural architecture (skeletal muscle as
representative birefringent tissue) on the Mueller matrix elemental images [114]. A
dual projection polarimetry method (whereby the sample is imaged twice at different
incident angles of the probing beam) in combination with Mueller matrix decompo-
sition has also been developed to quantify true intrinsic magnitude and orientation
angle of retardance from three dimensionally oriented birefringent structures [113].
After successful validation of this approach on birefringent spherical phantoms, the
method has been explored for the measurement (imaging) of the anisotropy axis and
its true magnitude in ex-vivo porcine myocardium tissue [113].
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FIGURE 7.25 Linear retardance 6 extracted from experimentally determined Mueller matri-
ces (using the Mueller matrix polar decomposition analysis (Section 7.2.3) corresponding to
1-mm-thick tissue sections from Lewis rat hearts following myocardial infarction. (a) White-
light photographs of untreated (left panel) and stem cell treated (right panel) tissue. (b) Mueller
matrix-derived linear retardance (6) values at different angular positions from the untreated
(solid triangles) and treated (open triangles) samples. (c) The corresponding linear retardance
(6) images for the same tissue derived from imaging polarimetry measurements. Adapted from
References 3 and 111.
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7.5.3 Summary

In this section, we reviewed some examples of “real-world” applications of polarimet-
ric imaging for biomedical purposes. In a first instance, polarization can be used as a
gating mechanism, allowing to isolate nondepolarized contribution in scattered light
to enhance single scattering signal coming from the most superficial tissue layers,
which can be used for example to evaluate the size of the cell nuclei and differentiate
healthy and cancerous tissues.

The multiply scattered contribution, which is usually dominant, typically exhibits
strong depolarization. In the absence of other major polarimetric effects, this param-
eter can be easily evaluated by partial polarimetric techniques like OSC, which are
relatively simple to implement in imaging systems and may prove very useful, for
example in dermatology for assessment of the surgical margins for the removal of
melanomas. Exploratory studies on colon samples suggest that simple OSC may
also be sufficient for early detection and characterization cancerous polyps at various
stages. At the earliest precancerous stages, depolarization decreases (this seems to be
a quite general trend) while at more advanced stages, at least in colon, the depolar-
ization variation is more complex due to increased contribution of the serosa, which
is weakly absorbing and strongly depolarizing.

Conversely, many other samples of interest for medical applications, such as
uterine cervix and oral cavity, may exhibit not only depolarization, but also linear
and circular birefringence. If so, full Mueller polarimetry, with subsequent matrix
decomposition, is needed to “disentangle” these effects to eventually provide relevant
parameters for diagnostics. As a rule of thumb, precancerous evolution seems to be
associated with a decrease of tissue birefringence and depolarizing power, but here
too the detailed behavior may be more complex, at least for cervical tissue, due
to the presence of two very different epithelia (malpighian and columnar). Further
studies, involving tens or even hundreds of samples, are thus needed to fully assess
the performance of polarimetric imaging for cancer detectionand staging.

Polarimetry is also promising in fields other than oncology. Noninvasive glu-
cometry has been viewed as “holy grail” in diabetology for decades. The optical
activity induced by glucose may prove relevant for this purpose, provided extremely
weak rotations can be measured and isolated from artifacts. Highly sensitive Mueller
polarimetry coupled with matrix decomposition has demonstrated the capability to
extract optical rotations in the millidegree range induced by glucose at physiological
levels in the presence of multiple scattering and strong geometry induced artifacts.
However, the elimination of the contribution of optically active compounds other
than glucose remains a formidable challenge.

Last but not least, polarimetry may also prove very useful for noninvasive char-
acterization of many other anisotropic tissues, such as myocardial muscle, where
birefringence seems to provide a very sensitive indicator of the tissue status (healthy
or infarcted or regenerating) and for the follow-up of treatments like tissue recon-
stitution from stem cells. Preliminary studies on bladder wall tissue also show the
relevance of polarimetric imaging for the study of biomechanical properties of tissues,
in part aimed at improving tissue engineering for grafts.
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All these examples clearly show the strong potential of polarimetry, both in imag-
ing and nonimaging modes, for medical applications. However, large-scale studies
are still needed for each application to fully assess the performance of the tech-
nique. Moreover, each application may require specialized developments, both in
instrumentation and in data analysis.

7.6 CONCLUSIONS AND OUTLOOK

Biological tissues typically exhibit quite complex polarimetric responses, which
may require sophisticated experimental and data treatment techniques to eventually
provide relevant parameters for medical diagnostics and tissue assessment. This
complexity is certainly the main reason why polarimetry has not yet been developed
to its full potential. However, this field has been progressing very quickly in the past
decade, holding the promise of great improvements in optical diagnostics for many
diseases in various fields.

In almost all tissues, the incident beam is strongly scattered, with scattering path
lengths on the order of ~100 um, leading to significant depolarization of the emerg-
ing light. The other polarimetric effects often present are linear retardation, due to
possible tissue linear birefringence, and (generally weaker) optical activity (or cir-
cular retardation/birefringence). Adequate description of these effects requires the
Stokes Mueller formalism, which is not so widely known in biophotonics. It is thus
described in some detail in the first part of this chapter, including the currently avail-
able procedures of matrix decompositions, which are essential for polarimetric data
analysis and constitute an active research field in themselves.

Polarimetric instrumentation is also rapidly evolving, based on the general prin-
ciples and typical setups outlined in the second part. In this respect, it is worth
emphasizing that polarimetry is intrinsically a low cost technique, which can be
added to virtually any optical system, allowing operation at any chosen spatial scale,
from microscopic to mesoscopic to macroscopic.

The interpretation of polarimetric data is also a challenging and active field.
Forward modeling of the polarimetric responses of known systems can be realized by
various approaches, from simple analytical models to numerically demanding Monte
Carlo simulations. Forward modeling has provided considerable physical insight in
the mechanisms of depolarization in suspensions of spherical scatterers in optically
isotropic media. Other practically important properties, such as the effect of tissue
linear and circular birefringence, are currently being actively explored.

While forward modeling is extremely useful to understand the basic mechanisms
defining the polarimetric response of a given type of sample in a given measurement
geometry, for optical diagnostics in principle one has to solve the inverse problem, that
is to determine the tissue “nature” from the measured polarimetric data. Ideally, this
should be achieved by fitting simulation based on a relevant multiparameter physical
model of the tissue to the experimental data. The values of the physical parameters,
such as scatterer densities, optical indexes, layer thicknesses, and the like, could then
be “parametrically” mapped onto “conventional” (optical, histologic, etc.) images
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whose meaning is clear. Unfortunately this is seldom feasible, due to the difficulty of
realistic and accurate tissue models (without relying on too many loosely determined
“parameters”), and to the computational burden related to such fitting procedure. As a
result, polarimetric data are usually interpreted in terms of the elementary polarimetric
properties provided by matrix decompositions. For a number of samples and various
pathologies, these properties exhibit interesting trends which may eventually provide
highly relevant tissue assessment metrics related to underlying tissue biophysical
properties. To this end, the current developments in Mueller matrix decomposition
theory and polarimetric instrumentation advances must be pursued in concert with
extensive ex vivo and in vivo cross-checking and validation studies.

So far, polarimetry has been limited to tissues accessible to direct imaging, and
many possibilities, such as polarimetry-guided surgery, have still to be explored within
this parameter space. But of course the scope of the polarimetric methodologies
would be significantly broadened if it could be extended to endoscopic systems.
Several research groups are at the forefront of this exciting polarimetric development
[116-118].

To conclude, given the expanding range of medical applications and the current
improvements in both experimental setups and data analysis procedures, the medium-
term and long-term future of tissue polarimetry appear very promising.
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